Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages

Go Home

System Dynamics Blog

SYSTEM DYNAMICS BLOG

New Horizons of Systems Science

New Horizons of Systems Science

by | Apr 20, 2022 | Co-Author : Michael | Asset Dynamics, Health Policy, Seminar Recording, WiSDom Blog

This Seminar was sponsored by the International Council on Systems Engineering (INCOSE).

Systems theory is developing to include new perspectives with a focus on integrated and inclusive transdisciplinary system approaches. This panel discusses new advances in systems science including critical systems thinking, social/socio-technical systems, and complex systems, which come together in the systems engineering principles. They also discuss where Systems Dynamics fits into this picture as well as other types of systems models.

By providing three perspectives on the discipline of Systems Engineering, the panelists shared a wide range of insights and experiences.  What the perspectives shared were ways Systems Engineering practitioners and the System Dynamics community could work together going forward.  One key to making New Horizons for System Science become reality is to merge the insights and experiences of each group into a shared, and sharable, practice.

 The relationship between Systems Science, Systems Thinking, and Systems Engineering is a key to understanding the range of applicable solution patterns

Erika Palmer began with the hope that both organizations, INCOSE and the System Dynamics Society, would continue to engage, learn, and innovate as part of a worldwide collaboration. The goal of the INCOSE panel is to foster an inclusive dialog on Systems Science. The purpose of the dialog is to accelerate the exchange and adoption of tools, techniques, and theories between the two sets of practitioners.

Michael Watson shared with the attendees that the upcoming release of System Engineering Principles will include Sociology as a topic.  By setting out the fifteen principles of Systems Engineering concisely, System Dynamics solutions can be applied to the principles.  Common patterns used across domains or across principles will provide leverage for other contributors.

Javier Calvo-Amodo shared insights from the perspective of building Systems Science disciplines and that students can participate with journal articles. Since System Dynamics provides a specific lens through which to view models, it can be used to validate the findings of other modeling types or to provide insights into what other modeling systems might reveal. A Systems Science map using Randomness and Complexity as the axes provided a guide to where specific System Dynamics developments can be best applied.

Erika Palmer (Cornell University) began with the hope that both organizations would continue to engage, learn, and innovate as part of a worldwide collaboration. The goal of the INCOSE panel is to foster an inclusive dialog on Systems Science. The purpose of the dialog is to accelerate the exchange and adoption of tools, techniques, and theories between the two sets of practitioners.

Michael Watson (NASA) shared with the attendees that the upcoming release of System Engineering Principles will include Sociology as a topic. By setting out the fifteen principles of Systems Engineering in a concise manner, System Dynamics solutions can be applied to the principles. Common patterns which apply across domains or across principles will provide leverage for other contributors.

Javier Calvo-Amodo (Oregon State University) shared insights from the perspective of building Systems Science disciplines and that students can participate with journal articles. Since System Dynamics provides a specific lens through which to view models, it can be used to validate the findings of other modeling types or to provide insights into what other modeling systems might reveal. A Systems Science map using Randomness and Complexity as the axes provided a guide to where specific System Dynamics developments can be best applied.

Complex systems are engineered by complex organizations.

Watch the recording below

Q&A

Q: Question to Javier: Why are there so few academic programs in Systems Science compared to Systems Engineering? Is this a problem?

A: They require interdisciplinary approaches, which are difficult to implement as they usually would span across different colleges within a university (e.g. College of Science, College of Liberal Arts, College of Business, College of Engineering, etc.)

Q: Question to Javier: What textbooks or papers would you recommend for learning more about systems science theory and the principles of systems science?

A: I recommend the following: Introductory: Cabrera, D., & Colosi, L. (2008). Distinctions, systems, relationships, and perspectives (DSRP): A theory of thinking and of things. Evaluation and Program Planning, 31(3), 311-316. and Cabrera, D., & Cabrera, L. (2022). DSRP Theory: A Primer. Systems, 10(2), 26.

Original work on systems science: Bertalanffy, A. R., Boulding, K. E., Ashby, W. R., Mead, M., & Bateson, G. (1968). L. von Bertalanffy, General System Theory. New York: George Braziller. and Von Bertalanffy, L. (2010). General systems theory. The Science of Synthesis: Exploring the Social Implications of General Systems Theory, 103.

Latest work on systems science: Rousseau, D. (2015). General systems theory: Its present and potential. Systems Research and Behavioral Science, 32(5), 522-533.;

Rousseau, D. (2018). On the architecture of systemology and the typology of its principles. Systems, 6(1), 7.

Rousseau, D., Billingham, J., Wilby, J., & Blachfellner, S. (2016). In search of general systems theory. Systema, 4(1).;

Rousseau, D. (2018). A framework for understanding systems principles and methods. Insight, 21(3), 9-18.;

Rousseau, D., Billingham, J., & Calvo-Amodio, J. (2018). Systemic semantics: A systems approach to building ontologies and concept maps. Systems, 6(3), 32.

Q: Can you suggest further introductory reading on category theory? This is new to me and a bit uncomfortable with this framing

A: Conceptual Mathematics by William Lawrence

Q: One thing caught my attention comments from Mike…. we need …. “to help build the complex system” and this…. helps… “development of a complex system”…. this is quite different from the underlying philosophy of System Dynamics where the emphasis is often trying to understand an existing system and adjust

A: The difference is in the context and/or domain of application; SD is designed to understand the underlying structures that give rise to System Dynamics as a means to understand from a high-level perspective how the system works. While useful for that purpose, the SD perspective places its main focus on control through feedback and feedforward loops, which may not capture other systemic and holistic arguments necessary to realize a complex engineered system. This is in alignment with Prof. Mike Jackson’s CST and CSP.

Q: Michael’s explanation of Category Theory introduced several concepts that are new (at least, new to me). Does INCOSE offer an introductory reference to supplement his insights?

Yes, go to INCOSE Systems Science Working Group Wiki and search in meetings. We have several presentations by Category Theorists in the meetings section.

Q: How would you differentiate between detailed complexity and dynamic complexity?

A: Those are two kinds of complexities that might or might not be present at the same time.

Q: The term engineering can mean the designing of a system, but is also heavily based on the activity of problem-solving. System Dynamics has problem-solving very strongly in its intellectual foreground. How are the latter activity and strength of System Dynamics used in Systems Sciences activities?

A: Causal loop diagrams and if needed the following simulation can be very powerful to help initial conceptualizations of complex problems. But they rarely yield the full answer; mostly because the models are difficult to verify and validate rigorously (especially if what is being designed is new and there is no frame of reference).

Q: Systems thinking means many things to many people some of these definitions are very loose and perhaps meaningless… is this a problem? Can it be fixed?

A: We believe that Derek Cabrera’s definition is quite good (it was developed using the scientific method). See Cabrera, D., & Colosi, L. (2008). Distinctions, systems, relationships, and perspectives (DSRP): A theory of thinking and of things. Evaluation and Program Planning, 31(3), 311-316. and Cabrera, D., & Cabrera, L. (2022). DSRP Theory: A Primer. Systems, 10(2), 26.

Q: How do we reduce the distance between the research and practice in Systems Engineering? The gap is much wider than, say, between physics and electrical engineering.

A: That is an excellent question that requires a much longer answer than what I can provide here. At the Systems Science Working Group, we are tackling exactly that. What I can say for certain is that we first MUST begin by defining the theoretical foundations for systems engineering. We have several projects working on that. Join us at INCOSE International Workshop to learn more.

Q: Can one mention articles and cases where the presented principles (of both speakers) are applied?

A: Calvo-Amodio, J., & Rousseau, D. (2019). The human activity system: Emergence from purpose, boundaries, relationships, and context. Procedia Computer Science, 153, 91-99. ;

Kittelman, S., Calvo‐Amodio, J., & Martínez León, H. C. (2018). A systems analysis of communication: defining the nature of and principles for communication within human activity systems. Systems Research and Behavioral Science, 35(5), 520-537.;

Taylor, S., Calvo-Amodio, J., & Well, J. (2020). A method for measuring systems thinking learning. Systems, 8(2), 11.;

Q: Why haven’t we seen System Dynamics modeling get as much attention as did machine learning modeling in recent years?

A: It is difficult to verify and validate rigorously.

Q: Does “Organized simplicity” equate to a reductionist approach?

A: Not quite, but the reductionist approach is most efficient in an organized simplicity

Q: Can you please talk about the role of soft systems methods (problem structuring methods for example) in systems engineering? They are useful in scoping poorly understood problem spaces but you rarely see them linked directly to System Engineer.

A: They are very useful to help address the social aspects of Systems Engineer endeavors (John Warfield and Peter Checkland developed their approaches (IM and SSM) to help with this issue); however, it is important to have frameworks that help us integrate all approaches. Mike Jackson’s CST and CSP are great foundations.

Q: Any books you’d recommend?

Mike Jackson’s 2019: Managing Complexity

Q: In System Dynamics, we often talk about the dynamic problem and the reference mode, then try to mode the system with the dynamic problem in mind. What might be the code switch for Systems Engineering’s approach?

A: There is no code switch conceptually. I would say that in Systems Engineer we look at requirements, value, or mission, and we design based on those (maybe similar to dynamic hypotheses, but not quite the same). We use MBSE (model-based System Engineer), in particular, a digital twin as the closest to a reference mode, but these are not isomorphic.

 

Erika Palmer is a Senior Lecturer in the Cornell Systems Engineering Program. She is the founder and chair of the Social Systems Working Group (SocWG) at the International Council for Systems Engineering (INCOSE); the Americas lead for Empowering Women Leaders in Systems Engineering (EWLSE) at INCOSE and represents Cornell on INCOSE’s Academic Council.

Michael D. Watson is the chair of the INCOSE Complex Systems Working Group and chair of the Systems Engineering Principles Action Team. He is the Technical Advisor in the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) Advanced Concepts Office. He graduated with a BSEE from the University of Kentucky in 1987 and obtained his MSE in Electrical and Computer Engineering (1996) and Ph.D. in Electrical and Computer Engineering (2005) from the University of Alabama in Huntsville.

Javier Calvo-Amodio is an Associate Professor of Industrial Engineering at Oregon State University; Chair of the Systems Science Working Group at INCOSE and Deputy Editor of Systems Research and Behavioral Science Journal. His research focus is on developing a fundamental understanding of how to integrate systems science into industrial and systems engineering research and practice to enable better engineering purposeful human activity systems.

Present at the Seminar Series

The Society Seminar Series consists of periodic online meetings on topics of interest to the systems thinking and System Dynamics communities. These virtual activities cover a wide range of topics that cross many domains while bringing together academics, practitioners, and students together for learning and lively discussion. Send your seminar proposal here

Sponsor a Seminar

The Society is actively looking for Seminar sponsors. This allows making a seminar open to all and free of charge. If your organization would like to sponsor one of these events, where you can promote your organization, firm or software, for instance, contact us at office@systemdynamics.org

Recent Posts

Data & Uncertainty in System Dynamics

Data & Uncertainty in System Dynamics Jay Forrester cautioned that “fitting curves to past system data can be misleading”. Certainly, that can be true, if the model is deficient. But we can have our cake and eat it too: a good model that passes traditional System...

Modeling for Improved Organizational Staff Diversity

Modeling for Improved Organizational Staff Diversity We cannot all succeed when (more than) half of us are held back. This slightly modified quote is from Malala Yousafzai, the courageous young woman who stood up for her right to be educated. It summarizes the ethos...

Upcoming Events

Recent Business cases

RSC Uses System Dynamics to Increase HVACR Sales Against the Tide

RSC Uses System Dynamics to Increase HVACR Sales Against the Tide “Using the proven Strategy Dynamic process focused our limited resources on organizing strategic issues, identifying the critical resources, and developing the insight to more rapidly create intuitive...

Achieving a Polio-Free World Through System Dynamics Simulation

Achieving a Polio-Free World Through System Dynamics Simulation EXECUTIVE Summary This System Dynamics model underpinned a 192 country resolution to eradicate polio globally and led the Bill and Melinda Gates Foundation to give Rotary International $100 million to...

MasterCard Halts Market Share Slide With Scenario Planning

MasterCard Halts Market Share Slide With Scenario Planning The Problem MasterCard, a major credit card company, once held a dominant market position US Market Share with only one primary competitor, Visa. They woke up one day and realized that, after six years of...

Join us

Fernando Redivo
Fernando Redivo

Systems Thinker | Community Builder