Powered by Google TranslateTranslate

Go Home

Using System Dynamics to Teach and Learn about COVID-19

Using System Dynamics to Teach and Learn about COVID-19

This Webinar is free due to the generous contribution of the University at Albany and California State University, Chico

A distinguished team of panelists demonstrated how we can all think globally and act locally on the most challenging topics of the day. From David Anderson’s discussion of work that has been ongoing since the onset of Covid to Babak Bahaddin’s pointing us to the latest diaries at the New Fadam farm site (needs website reference), the entire webinar is packed with insight.

By showing how cross-discipline expertise and international exchange of ideas and experiences can come together in a system dynamics initiative, this panel has placed the impacts of Covid at the center of their work.  We all know how the pandemic has influenced our lives, and this team is looking into why that happened and how to lessen its impact on us going forward.

Using a model developed by Ali Mashayekhi and applied extensively by Daniel Gordon, a component-based study and survey tool for COVID has been refined over the course of the COVID era. Luis Lunar-Reyes has applied the model to its effects on business and governmental response and Hyunjung Kim has taken the model and developed a self-study learning tool kit that is available under a Creative Commons license.

There is so much great work going on, watching this video can inspire System Dynamics specialists, and researchers from all disciplines, to take a look at Covid-19 through the lens of this model.

Ali N. Mashayekhi is a retired professor of management from the Sharif University of Technology in Tehran, Iran where he taught System Dynamics and strategic management. He received his BSc in Mechanical Engineering from Sharif University and his Ph.D. in System Dynamics from MIT in Cambridge Massachusetts.

Babak Bahaddin works as an associate consultant at isee systems. Babak holds a bachelor’s degree in engineering from Sharif University of Technology, and a Ph.D. in Information Science, from the University at Albany, State University of New York.

Daniel Gordon trained in System Dynamics at Rockefeller College, the State University of New York at Albany. He is retired from the New York State Health Department, where he spent 34 years working in health care policy analysis and HIV epidemiology.

David Andersen is Professor Emeritus in Public Administration and Information Science at the University at Albany – SUNY. He is a former President and Vice President for Finance for the System Dynamics Society as well as a winner of the Forrester Award.

Hyunjung Kim is a professor of management at California State University, Chico. She teaches strategy and management courses using system dynamics. She received her Ph.D. in Public Administration from the Rockefeller College of Public Affairs and Policy, University at Albany.

Luis Felipe Luna-Reyesis a Professor of Public Administration and Policy at the University at Albany and a National Academy of Public Administration Fellow. His research is at the intersection of Public Administration, Information Systems, and Systems Sciences.

Present at the Seminar Series

The Society Seminar Series consists of periodic online meetings on topics of interest to the systems thinking and System Dynamics communities. These virtual activities cover a wide range of topics that cross many domains while bringing together academics, practitioners, and students together for learning and lively discussion. Send your seminar proposal here

Sponsor a Seminar

The Society is actively looking for Seminar sponsors. This allows making a seminar open to all and free of charge. If your organization would like to sponsor one of these events, where you can promote your organization, firm or software, for instance, contact us at office@systemdynamics.org

Recent Posts

A Close-Up on Our New Look

A Close-Up on Our New Look We are excited to reveal our new logo and branding, embodying the System Dynamics Society’s values and vision for the future. The looped arrows with an S curve symbolize growth, change over time, and commitment to raising complex...

Exploring Careers in System Dynamics

Exploring Careers in System Dynamics The Exploring Careers in System Dynamics webinar, held on March 29, 2023, was an engaging panel discussion featuring experts Sharon Els, Eduardo Romanenko, and Georg Pallaske, moderated by Shane Carnohan. Attendees had the...

Upcoming Events

Recent Business cases

System Dynamics Helps Farmers Escape Poverty Trap in Guatemala

System Dynamics Helps Farmers Escape Poverty Trap in Guatemala EXECUTIVE Summary Guatemala holds the 4th highest global ranking for chronic malnutrition, and climate change is intensifying the challenges subsistence farmers face in providing food for their families....

Twinings Uses System Dynamics Games to Enhance HR Capability

Twinings Uses System Dynamics Games to Enhance HR Capability “Realistic simulation is a powerful approach to building capability. The business simulation developed [by Dashboard Simulations and Lane4] gave [Twinings staff] an experience that called for them to develop...

RSC Uses System Dynamics to Increase HVACR Sales Against the Tide

RSC Uses System Dynamics to Increase HVACR Sales Against the Tide “Using the proven Strategy Dynamic process focused our limited resources on organizing strategic issues, identifying the critical resources, and developing the insight to more rapidly create intuitive...

Join us

New Horizons of Systems Science

New Horizons of Systems Science

This Seminar was sponsored by the International Council on Systems Engineering (INCOSE).

Systems theory is developing to include new perspectives with a focus on integrated and inclusive transdisciplinary system approaches. This panel discusses new advances in systems science including critical systems thinking, social/socio-technical systems, and complex systems, which come together in the systems engineering principles. They also discuss where Systems Dynamics fits into this picture as well as other types of systems models.

By providing three perspectives on the discipline of Systems Engineering, the panelists shared a wide range of insights and experiences.  What the perspectives shared were ways Systems Engineering practitioners and the System Dynamics community could work together going forward.  One key to making New Horizons for System Science become reality is to merge the insights and experiences of each group into a shared, and sharable, practice.

 The relationship between Systems Science, Systems Thinking, and Systems Engineering is a key to understanding the range of applicable solution patterns

Erika Palmer began with the hope that both organizations, INCOSE and the System Dynamics Society, would continue to engage, learn, and innovate as part of a worldwide collaboration. The goal of the INCOSE panel is to foster an inclusive dialog on Systems Science. The purpose of the dialog is to accelerate the exchange and adoption of tools, techniques, and theories between the two sets of practitioners.

Michael Watson shared with the attendees that the upcoming release of System Engineering Principles will include Sociology as a topic.  By setting out the fifteen principles of Systems Engineering concisely, System Dynamics solutions can be applied to the principles.  Common patterns used across domains or across principles will provide leverage for other contributors.

Javier Calvo-Amodo shared insights from the perspective of building Systems Science disciplines and that students can participate with journal articles. Since System Dynamics provides a specific lens through which to view models, it can be used to validate the findings of other modeling types or to provide insights into what other modeling systems might reveal. A Systems Science map using Randomness and Complexity as the axes provided a guide to where specific System Dynamics developments can be best applied.

Erika Palmer (Cornell University) began with the hope that both organizations would continue to engage, learn, and innovate as part of a worldwide collaboration. The goal of the INCOSE panel is to foster an inclusive dialog on Systems Science. The purpose of the dialog is to accelerate the exchange and adoption of tools, techniques, and theories between the two sets of practitioners.

Michael Watson (NASA) shared with the attendees that the upcoming release of System Engineering Principles will include Sociology as a topic. By setting out the fifteen principles of Systems Engineering in a concise manner, System Dynamics solutions can be applied to the principles. Common patterns which apply across domains or across principles will provide leverage for other contributors.

Javier Calvo-Amodo (Oregon State University) shared insights from the perspective of building Systems Science disciplines and that students can participate with journal articles. Since System Dynamics provides a specific lens through which to view models, it can be used to validate the findings of other modeling types or to provide insights into what other modeling systems might reveal. A Systems Science map using Randomness and Complexity as the axes provided a guide to where specific System Dynamics developments can be best applied.

Complex systems are engineered by complex organizations.

Watch the recording below

Q&A

Q: Question to Javier: Why are there so few academic programs in Systems Science compared to Systems Engineering? Is this a problem?

A: They require interdisciplinary approaches, which are difficult to implement as they usually would span across different colleges within a university (e.g. College of Science, College of Liberal Arts, College of Business, College of Engineering, etc.)

Q: Question to Javier: What textbooks or papers would you recommend for learning more about systems science theory and the principles of systems science?

A: I recommend the following: Introductory: Cabrera, D., & Colosi, L. (2008). Distinctions, systems, relationships, and perspectives (DSRP): A theory of thinking and of things. Evaluation and Program Planning, 31(3), 311-316. and Cabrera, D., & Cabrera, L. (2022). DSRP Theory: A Primer. Systems, 10(2), 26.

Original work on systems science: Bertalanffy, A. R., Boulding, K. E., Ashby, W. R., Mead, M., & Bateson, G. (1968). L. von Bertalanffy, General System Theory. New York: George Braziller. and Von Bertalanffy, L. (2010). General systems theory. The Science of Synthesis: Exploring the Social Implications of General Systems Theory, 103.

Latest work on systems science: Rousseau, D. (2015). General systems theory: Its present and potential. Systems Research and Behavioral Science, 32(5), 522-533.;

Rousseau, D. (2018). On the architecture of systemology and the typology of its principles. Systems, 6(1), 7.

Rousseau, D., Billingham, J., Wilby, J., & Blachfellner, S. (2016). In search of general systems theory. Systema, 4(1).;

Rousseau, D. (2018). A framework for understanding systems principles and methods. Insight, 21(3), 9-18.;

Rousseau, D., Billingham, J., & Calvo-Amodio, J. (2018). Systemic semantics: A systems approach to building ontologies and concept maps. Systems, 6(3), 32.

Q: Can you suggest further introductory reading on category theory? This is new to me and a bit uncomfortable with this framing

A: Conceptual Mathematics by William Lawrence

Q: One thing caught my attention comments from Mike…. we need …. “to help build the complex system” and this…. helps… “development of a complex system”…. this is quite different from the underlying philosophy of System Dynamics where the emphasis is often trying to understand an existing system and adjust

A: The difference is in the context and/or domain of application; SD is designed to understand the underlying structures that give rise to System Dynamics as a means to understand from a high-level perspective how the system works. While useful for that purpose, the SD perspective places its main focus on control through feedback and feedforward loops, which may not capture other systemic and holistic arguments necessary to realize a complex engineered system. This is in alignment with Prof. Mike Jackson’s CST and CSP.

Q: Michael’s explanation of Category Theory introduced several concepts that are new (at least, new to me). Does INCOSE offer an introductory reference to supplement his insights?

Yes, go to INCOSE Systems Science Working Group Wiki and search in meetings. We have several presentations by Category Theorists in the meetings section.

Q: How would you differentiate between detailed complexity and dynamic complexity?

A: Those are two kinds of complexities that might or might not be present at the same time.

Q: The term engineering can mean the designing of a system, but is also heavily based on the activity of problem-solving. System Dynamics has problem-solving very strongly in its intellectual foreground. How are the latter activity and strength of System Dynamics used in Systems Sciences activities?

A: Causal loop diagrams and if needed the following simulation can be very powerful to help initial conceptualizations of complex problems. But they rarely yield the full answer; mostly because the models are difficult to verify and validate rigorously (especially if what is being designed is new and there is no frame of reference).

Q: Systems thinking means many things to many people some of these definitions are very loose and perhaps meaningless… is this a problem? Can it be fixed?

A: We believe that Derek Cabrera’s definition is quite good (it was developed using the scientific method). See Cabrera, D., & Colosi, L. (2008). Distinctions, systems, relationships, and perspectives (DSRP): A theory of thinking and of things. Evaluation and Program Planning, 31(3), 311-316. and Cabrera, D., & Cabrera, L. (2022). DSRP Theory: A Primer. Systems, 10(2), 26.

Q: How do we reduce the distance between the research and practice in Systems Engineering? The gap is much wider than, say, between physics and electrical engineering.

A: That is an excellent question that requires a much longer answer than what I can provide here. At the Systems Science Working Group, we are tackling exactly that. What I can say for certain is that we first MUST begin by defining the theoretical foundations for systems engineering. We have several projects working on that. Join us at INCOSE International Workshop to learn more.

Q: Can one mention articles and cases where the presented principles (of both speakers) are applied?

A: Calvo-Amodio, J., & Rousseau, D. (2019). The human activity system: Emergence from purpose, boundaries, relationships, and context. Procedia Computer Science, 153, 91-99. ;

Kittelman, S., Calvo‐Amodio, J., & Martínez León, H. C. (2018). A systems analysis of communication: defining the nature of and principles for communication within human activity systems. Systems Research and Behavioral Science, 35(5), 520-537.;

Taylor, S., Calvo-Amodio, J., & Well, J. (2020). A method for measuring systems thinking learning. Systems, 8(2), 11.;

Q: Why haven’t we seen System Dynamics modeling get as much attention as did machine learning modeling in recent years?

A: It is difficult to verify and validate rigorously.

Q: Does “Organized simplicity” equate to a reductionist approach?

A: Not quite, but the reductionist approach is most efficient in an organized simplicity

Q: Can you please talk about the role of soft systems methods (problem structuring methods for example) in systems engineering? They are useful in scoping poorly understood problem spaces but you rarely see them linked directly to System Engineer.

A: They are very useful to help address the social aspects of Systems Engineer endeavors (John Warfield and Peter Checkland developed their approaches (IM and SSM) to help with this issue); however, it is important to have frameworks that help us integrate all approaches. Mike Jackson’s CST and CSP are great foundations.

Q: Any books you’d recommend?

Mike Jackson’s 2019: Managing Complexity

Q: In System Dynamics, we often talk about the dynamic problem and the reference mode, then try to mode the system with the dynamic problem in mind. What might be the code switch for Systems Engineering’s approach?

A: There is no code switch conceptually. I would say that in Systems Engineer we look at requirements, value, or mission, and we design based on those (maybe similar to dynamic hypotheses, but not quite the same). We use MBSE (model-based System Engineer), in particular, a digital twin as the closest to a reference mode, but these are not isomorphic.

 

Erika Palmer is a Senior Lecturer in the Cornell Systems Engineering Program. She is the founder and chair of the Social Systems Working Group (SocWG) at the International Council for Systems Engineering (INCOSE); the Americas lead for Empowering Women Leaders in Systems Engineering (EWLSE) at INCOSE and represents Cornell on INCOSE’s Academic Council.

Michael D. Watson is the chair of the INCOSE Complex Systems Working Group and chair of the Systems Engineering Principles Action Team. He is the Technical Advisor in the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) Advanced Concepts Office. He graduated with a BSEE from the University of Kentucky in 1987 and obtained his MSE in Electrical and Computer Engineering (1996) and Ph.D. in Electrical and Computer Engineering (2005) from the University of Alabama in Huntsville.

Javier Calvo-Amodio is an Associate Professor of Industrial Engineering at Oregon State University; Chair of the Systems Science Working Group at INCOSE and Deputy Editor of Systems Research and Behavioral Science Journal. His research focus is on developing a fundamental understanding of how to integrate systems science into industrial and systems engineering research and practice to enable better engineering purposeful human activity systems.

Present at the Seminar Series

The Society Seminar Series consists of periodic online meetings on topics of interest to the systems thinking and System Dynamics communities. These virtual activities cover a wide range of topics that cross many domains while bringing together academics, practitioners, and students together for learning and lively discussion. Send your seminar proposal here

Sponsor a Seminar

The Society is actively looking for Seminar sponsors. This allows making a seminar open to all and free of charge. If your organization would like to sponsor one of these events, where you can promote your organization, firm or software, for instance, contact us at office@systemdynamics.org

Recent Posts

A Close-Up on Our New Look

A Close-Up on Our New Look We are excited to reveal our new logo and branding, embodying the System Dynamics Society’s values and vision for the future. The looped arrows with an S curve symbolize growth, change over time, and commitment to raising complex...

Exploring Careers in System Dynamics

Exploring Careers in System Dynamics The Exploring Careers in System Dynamics webinar, held on March 29, 2023, was an engaging panel discussion featuring experts Sharon Els, Eduardo Romanenko, and Georg Pallaske, moderated by Shane Carnohan. Attendees had the...

Upcoming Events

Recent Business cases

System Dynamics Helps Farmers Escape Poverty Trap in Guatemala

System Dynamics Helps Farmers Escape Poverty Trap in Guatemala EXECUTIVE Summary Guatemala holds the 4th highest global ranking for chronic malnutrition, and climate change is intensifying the challenges subsistence farmers face in providing food for their families....

Twinings Uses System Dynamics Games to Enhance HR Capability

Twinings Uses System Dynamics Games to Enhance HR Capability “Realistic simulation is a powerful approach to building capability. The business simulation developed [by Dashboard Simulations and Lane4] gave [Twinings staff] an experience that called for them to develop...

RSC Uses System Dynamics to Increase HVACR Sales Against the Tide

RSC Uses System Dynamics to Increase HVACR Sales Against the Tide “Using the proven Strategy Dynamic process focused our limited resources on organizing strategic issues, identifying the critical resources, and developing the insight to more rapidly create intuitive...

Join us