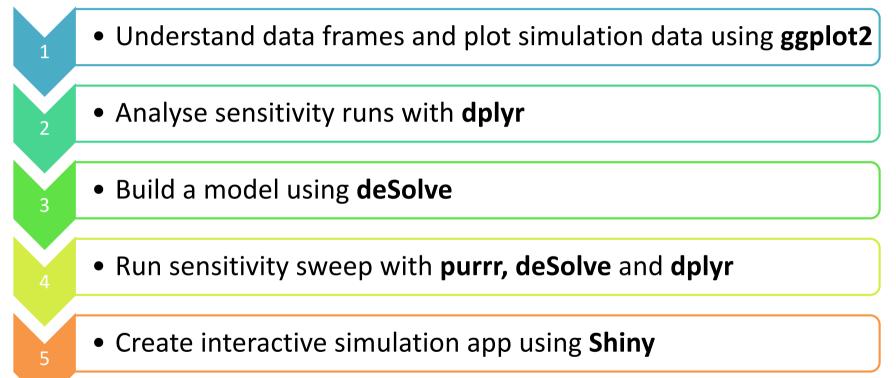
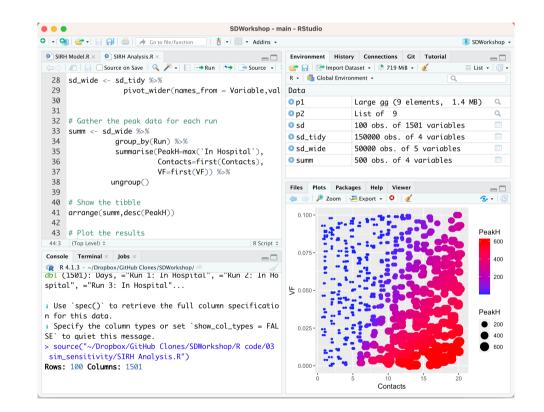


System Dynamics Modelling with R An Interactive Workshop

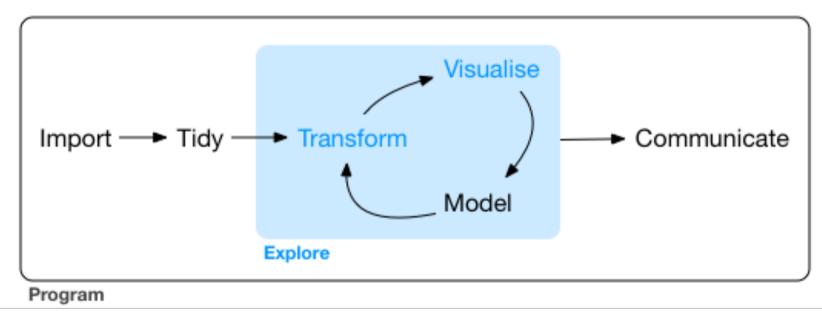
Prof. Jim Duggan,

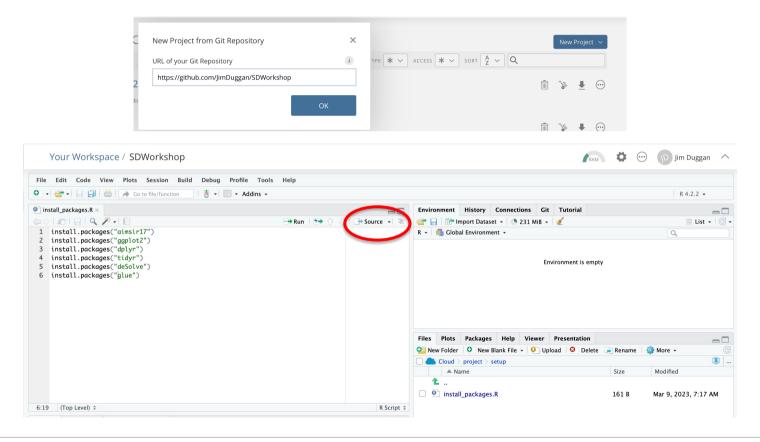

University of Galway

https://github.com/JimDuggan/SDWorshop


Overall Goals – Focus on breadth!

R


- R's *mission* is to enable the best and most thorough exploration of data possible (Chambers 2008).
- It is a dialect of the S language, developed at Bell Laboratories
- ACM noted that *S* "will forever alter the way people analyze, visualize, and manipulate data"


Data Science Process and Workflow

"Data exploration is the art of looking at your data, rapidly generating hypotheses, quickly testing them, then repeating again and again and again." (Wickham and Grolemund 2017).

Access to workshop resources and setup

1. ggplot22. dplyr3.
deSolve4. purrr5. Shiny

- Introducing the data frame (rectangular data)
- Plot graphs
- Import a simulation run from a CSV file (e.g. Stella/Vensim output)
- Plot simulation data

Data Frames/Tibbles – mpg

- The most • common way of storing data in R
- A twoulletdimensional structure, with rows (observations) and columns (variables)

<pre>> mpg # A tibble: 23</pre>	4 × 11									
manufacture	r model	displ	year	cyl	trans	drv	cty	hwy	fl	class
<chr></chr>	<chr></chr>	<db1></db1>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
1 audi	a4	1.8	<u>1</u> 999	4	auto(15)	f	18	29	р	compact
2 audi	a4	1.8	<u>1</u> 999	4	manual(m5)	f	21	29	р	compact
3 audi	a4	2	<u>2</u> 008	4	manual(m6)	f	20	31	р	compact
4 audi	a4	2	<u>2</u> 008	4	auto(av)	f	21	30	р	compact
5 audi	a4	2.8	<u>1</u> 999	6	auto(15)	f	16	26	р	compact
6 audi	a4	2.8	<u>1</u> 999	6	manual(m5)	f	18	26	р	compact
7 audi	a4	3.1	<u>2</u> 008	6	auto(av)	f	18	27	р	compact
8 audi	a4 quattro	1.8	<u>1</u> 999	4	manual(m5)	4	18	26	р	compact
9 audi	a4 quattro	1.8	<u>1</u> 999	4	auto(15)	4	16	25	р	compact
10 audi	a4 quattro	2	<u>2</u> 008	4	manual(m6)	4	20	28	р	compact

... with 224 more rows

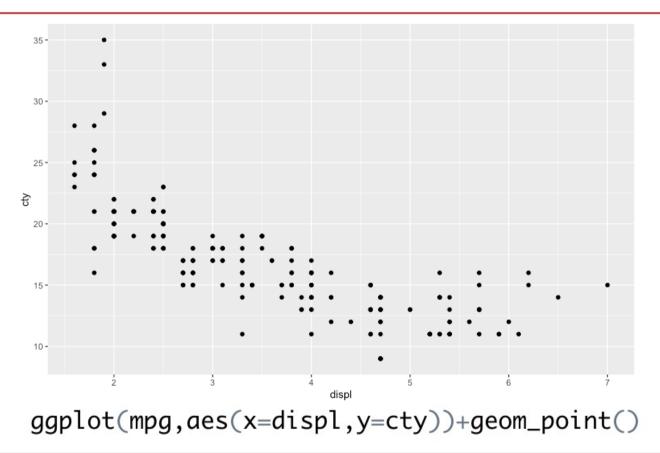
i Use `print(n = ...)` to see more rows

Sample Code (engines.R)

1 library(ggplot2)

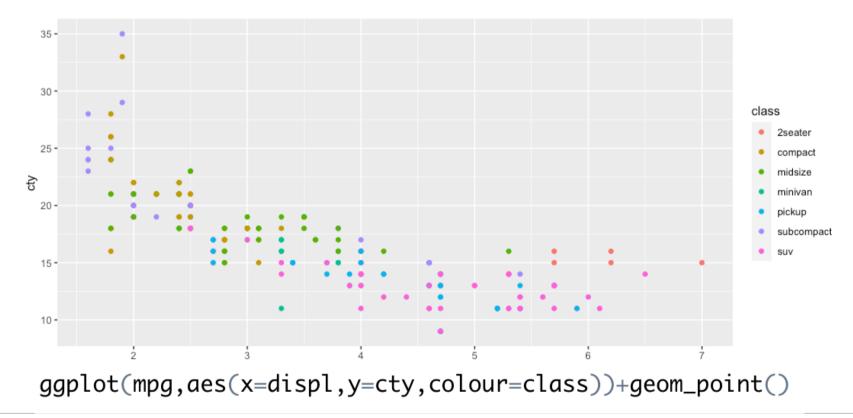
3 summary(mpg)

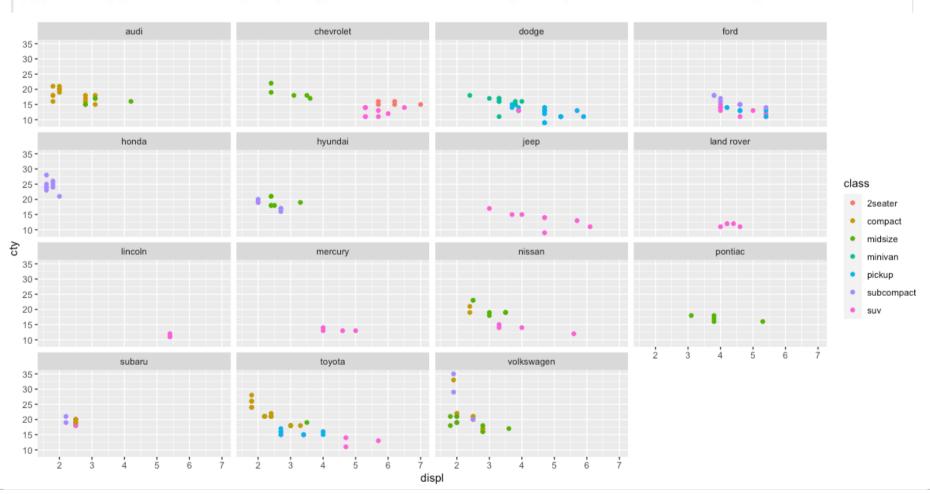
4


2

5 ggplot(mpg,aes(x=displ,y=cty))+geom_point()

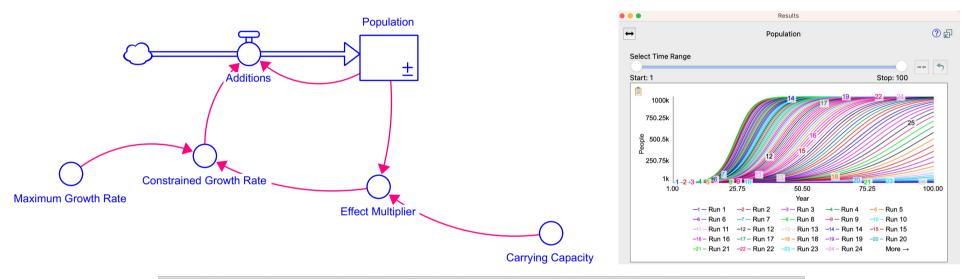
<pre>> summary(mpg) manufacturer Length:234 Class :character Mode :character</pre>	model Length:234 Class :character Mode :character		0 1st Qu.:1999	cyl Min. :4.000 1st Qu.:4.000 Median :6.000	trans Length:234 Class :character Mode :character
		Mean :3.472		Mean :5.889	
		3rd Qu.:4.600 Max. :7.000		3rd Qu.:8.000 Max. :8.000	
drv	cty	hwy	fl	class	
Length:234	Min. : 9.00	Min. :12.00	Length:234	Length:234	
Class :character	1st Qu.:14.00	1st Qu.:18.00	Class :character	Class :charact	ter
Mode :character	Median :17.00	Median :24.00	Mode :character	Mode :charact	ter
	Mean :16.86	Mean :23.44			
	3rd Qu.:19.00	3rd Qu.:27.00			
	Max. :35.00	Max. :44.00			




"The simple graph has brought more information to the data analyst's mind that any other device." – John Tukey

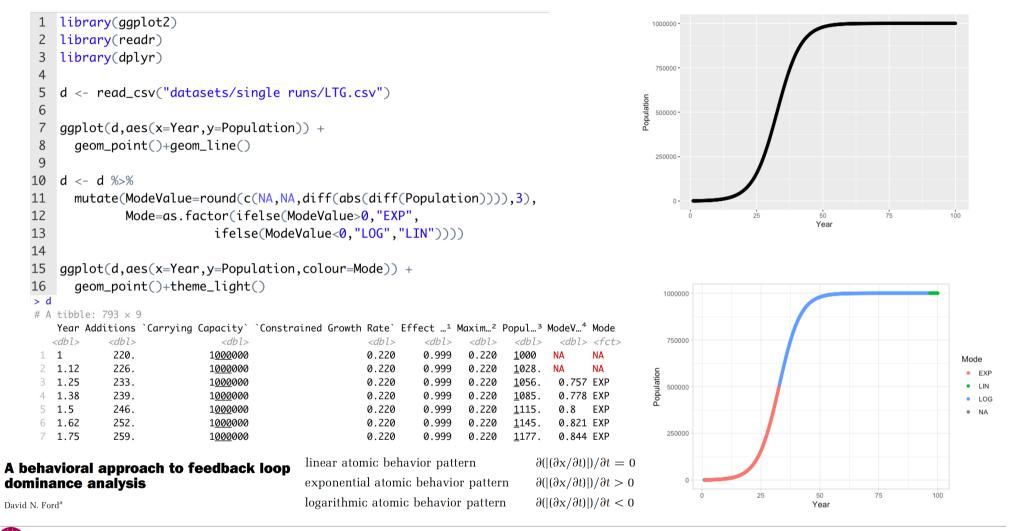
"The greatest value of a picture is when it forces us to notice what we never expected to see" – John Tukey

A third variable can be added to a 2-D plot by mapping it to an aesthetic: colour, size or shape


ggplot(mpg,aes(x=displ,y=cty,colour=class))+geom_point()+facet_wrap(~manufacturer)

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

TALWAY System Dynamics Modelling using R


SDS Seminar Series 2023 11

Simulation Output – CSV File

А	В	С	D	E	F	G
Year	Additions	Carrying Capacity	Constrained Growth Rate	Effect Multiplier	Maximum Growth Rate	Population
1	220.2795	1000000	0.2202795	0.999	0.2205	1000
1.125	226.3386436	1000000	0.220273429	0.998972465	0.2205	1027.534938
1.25	232.5641055	1000000	0.22026719	0.998944173	0.2205	1055.827268
1.375	238.9604315	1000000	0.22026078	0.998915102	0.2205	1084.897781
1.5	245.5322907	1000000	0.220254194	0.998885232	0.2205	1114.767835
1.625	252.2844784	1000000	0.220247426	0.998854541	0.2205	1145.459371

1. ggplot2 2. dplyr

5. Shiny

- Visualisation is an important tool for insight generation, but it's rare that you get the data in exactly the right form you need (Wickham and Grolemund 2017)
 - Create new variables
 - Create summaries
 - Order data
- dplyr package is designed for data transformation

dplyr Basics: 5 key functions

Function	Purpose
filter()	Pick observations by their values
arrange()	Reorder the rows
select()	Pick variables by their names
mutate()	<i>Create new variables with functions of existing variables</i>
summarise()	Collapse many values down to a single summary

• "A grammar of data manipulation"

https://dplyr.tidyverse.org

- All verbs (functions) work similarly
 - The first argument is a data frame/tibble
 - The subsequent arguments decide what to do with the data frame/tibble
 - The result (data frame/tibble) supports chaining of steps NOTE the "pipe operator" which we
 will cover later.

Process Sensitivity Data (Stella)

А	В	С	D	E	F	G	Н	I.	J
Year	Run 1: Population	Run 2: Population	Run 3: Population	Run 4: Population	Run 5: Population	Run 6: Population	Run 7: Population	Run 8: Population	Run 9: Population
1	1000	1000	1000	1000	1000	1000	1000	1000	1000
2	1104.372133	1108.19136	1172.035949	1231.861465	1056.806787	1249.957467	1271.978986	1001.499482	1085.448046
3	1219.624672	1228.073885	1373.62837	1517.403111	1116.837003	1562.298647	1617.814294	1003.00121	1178.188937
4	1346.888976	1360.907683	1609.840283	1869.011748	1180.273137	1952.539704	2057.489958	1004.505187	1278.843588
5	1487.413409	1508.087943	1886.596445	2301.911204	1247.307964	2440.02602	2616.353021	1006.011418	1388.085504

- > head(sd)
- # A tibble: 6 × 203

	Year	="Run¹	="Run ² :	="Run ³	="Run ⁴	="Run ⁵	="Run ⁶	="Run ⁷	="Run ⁸	="Run ⁹ :	="Run×	="Run× =	="Run×
	<dbl></dbl>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>	<db1></db1>	<db1></db1>
1	1	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000	<u>1</u> 000
2	2	<u>1</u> 104.	<u>1</u> 108.	<u>1</u> 172.	<u>1</u> 232.	<u>1</u> 057.	<u>1</u> 250.	<u>1</u> 272.	<u>1</u> 001.	<u>1</u> 085.	<u>1</u> 017.	<u>1</u> 152.	<u>1</u> 179.
2	٦	1220	1778	1374	1517	1117	1562	1618	1003	1178	1033	1326	1390
1	1	ibrary	(read	ר)									
2	1	ibrary	(dplyr	ר)									
3	1	ibrary	(ggplo	ot2)									
4	1	ibrary	(strir	ngr)									
5													
6	#	Load	in the	e sens	sitiv	ity do	ata						
7	S	d <- r	ead_cs	sv(" <mark>d</mark>	ataset	ts/se	nsiti	vity	runs/	LTG_Se	ensit	ivity.	("vasv"

Convert wide data to tidy data

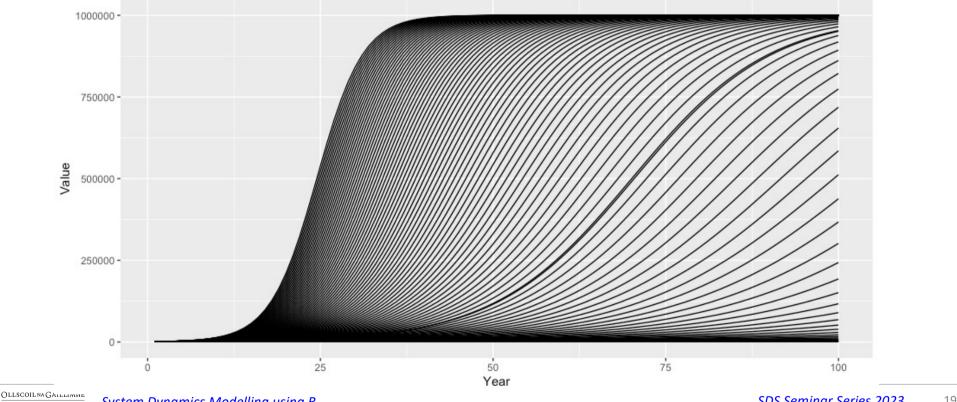
> sd_tidy

# A	tibbl	le: 20,	200×4	
	Run	Year	Variable	Value
<	<int></int>	<db1></db1>	<chr></chr>	<dbl></dbl>
1	1	1	Population	<u>1</u> 000
2	2	1	Population	<u>1</u> 000
3	3	1	Population	<u>1</u> 000
4	4	1	Population	<u>1</u> 000
5	5	1	Population	<u>1</u> 000
6	6	1	Population	<u>1</u> 000
7	7	1	Population	<u>1</u> 000
8	8	1	Population	<u>1</u> 000
9	9	1	Population	<u>1</u> 000
10	10	1	Population	<u>1</u> 000
#	with	20,190) more rows	

- · · ·

- The tidy data standard is designed to:
 - Facilitate initial exploration and analysis of data
 - Simplify the development of data analysis tools that work well together
- Rules
 - Each variable must have its own column
 - Each observation must have its own row
 - Each value must have its own cell

Code (tidyr and dplyr)


9	# Convert to tidy data format
10	sd_tidy <- sd %>%
11	pivot_longer(cols=!Year,names_to="Variable",values_to="Value") %>%
12	<pre>mutate(Variable=str_replace_all(Variable,'\"',""),</pre>
13	<pre>Variable=str_replace(Variable,"=","")) %>%</pre>
14	separate(Variable,into=c("Run","Variable"),sep = ":") %>%
15	<pre>mutate(Variable=trimws(Variable)) %>%</pre>
16	separate(Run,c("TempRun","Run"),sep = " ",convert = TRUE) %>%
17	<pre>select(Run,Year,Variable,Value)</pre>

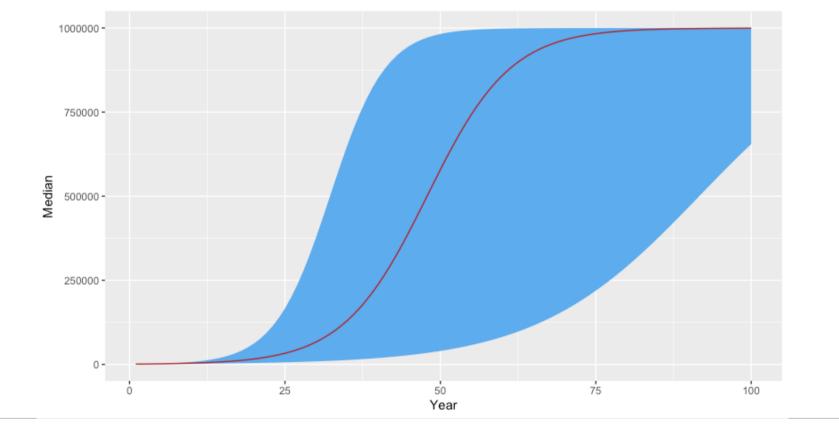
Tidy data makes it easier to leverage tools such as ggplot2 and dplyr

Plotting multiple runs with ggplot2

ggplot(filter(sd_tidy,Variable=="Population"),aes(x=Year,y=Value,group=Run))+geom_line() 19

System Dynamics Modelling using R

Finding summary data - quantiles


21	sum_runs <- sd_tidy %>%
22	filter(Variable=="Population") %>%
23	group_by(Variable,Year) %>%
24	<pre>summarise(Q75=quantile(Value,0.75),</pre>
25	Q25=quantile(Value,0.25),
26	Median=median(Value),
27	Mean=mean(Value))

Finding summary data - quantiles

> sum_runs	
# A tibble: 100 × 0	6
# Groups: Variab	le [1]
Variable Yea	r Q75 Q25 Median Mean
<chr> <dbl.< td=""><td>> <dbl> <dbl> <dbl> <dbl></dbl></dbl></dbl></dbl></td></dbl.<></chr>	> <dbl> <dbl> <dbl> <dbl></dbl></dbl></dbl></dbl>
1 Population	1 <u>1</u> 000 <u>1</u> 000 <u>1</u> 000 <u>1</u> 000
2 Population	2 <u>1</u> 246. <u>1</u> 079. <u>1</u> 158. <u>1</u> 163.
3 Population	3 <u>1</u> 553. <u>1</u> 164. <u>1</u> 342. <u>1</u> 362.
4 Population	4 <u>1</u> 936. <u>1</u> 256. <u>1</u> 554. <u>1</u> 607.
5 Population	5 <u>2</u> 412. <u>1</u> 356. <u>1</u> 800. <u>1</u> 909.
6 Population	6 <u>3</u> 005. <u>1</u> 463. <u>2</u> 085. <u>2</u> 282.
7 Population	7 <u>3</u> 743. <u>1</u> 578. <u>2</u> 414. <u>2</u> 745.
8 Population	8 <u>4</u> 662. <u>1</u> 703. <u>2</u> 796. <u>3</u> 322.
9 Population	9 <u>5</u> 805. <u>1</u> 837. <u>3</u> 238. <u>4</u> 043.
10 Population 10	0 <u>7</u> 227. <u>1</u> 982. <u>3</u> 749. <u>4</u> 945.
# with 90 more r	OWS
<pre># i Use `print(n =</pre>)` to see more rows

- 30 ggplot(sum_runs,aes(Year, Median)) +
- 31 geom_ribbon(aes(ymin = Q25,ymax = Q75),fill = "steelblue2") +
- 32 geom_line(color = "firebrick")

1. ggplot2 > 2

<u>3.</u> deSolve

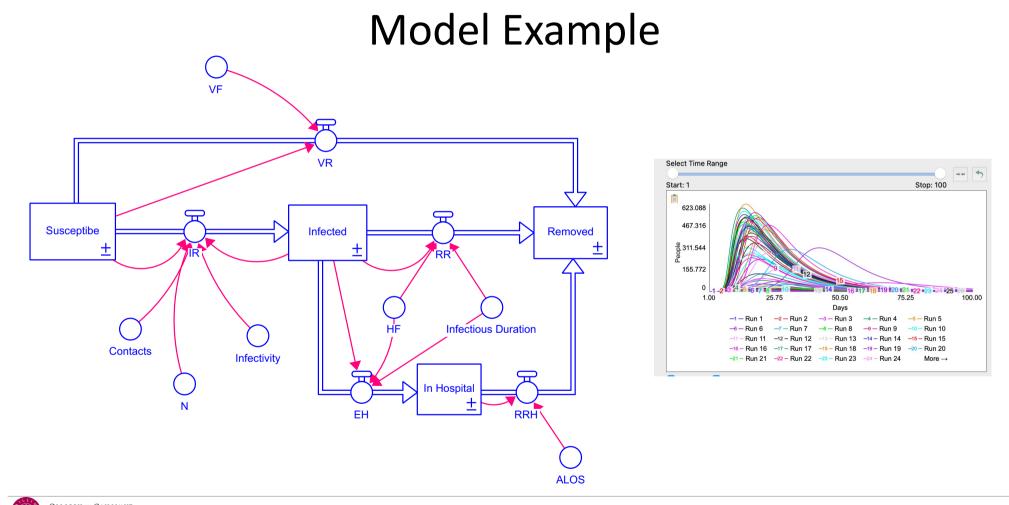
r 🔷 5. Shiny

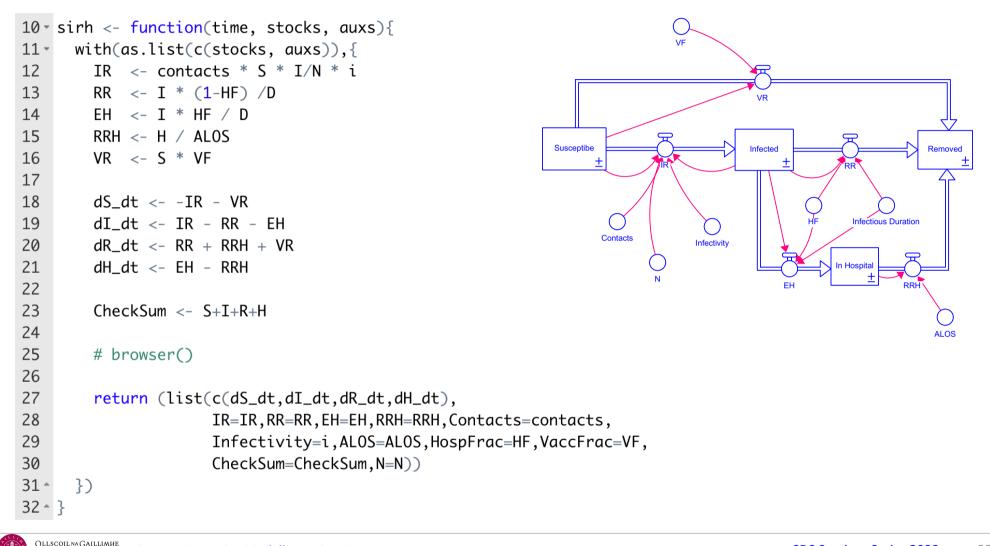
R's deSolve package solves initial value problems written as ordinary differential equations (ODE), differential algebraic equations (DAE), and partial differential equations (PDE)

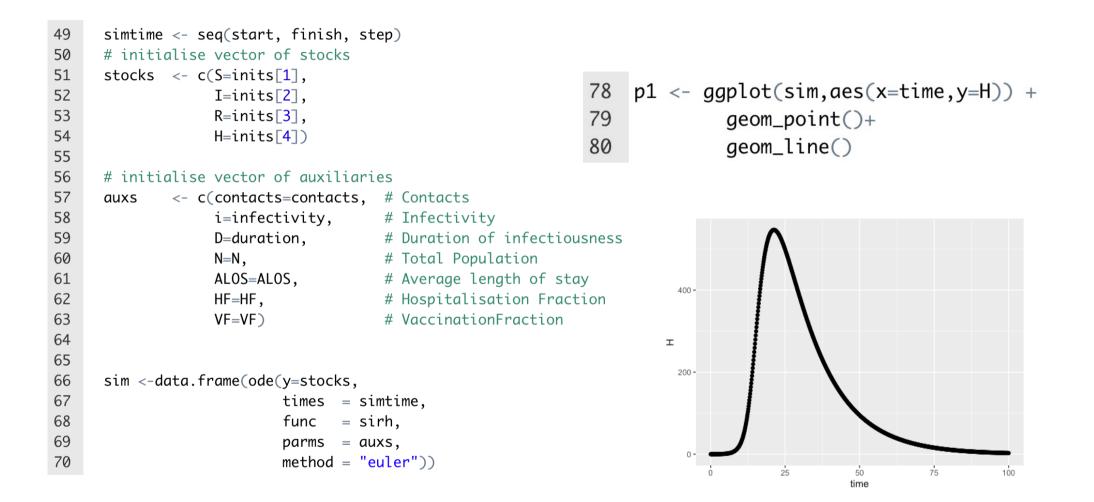
Journal of Statistical Software February 2010, Volume 33, Issue 9. http://www.jstatsoft.org/

Solving Differential Equations in R: Package deSolve

Karline Soetaert Netherlands Institute of Ecology Thomas Petzoldt Technische Universität Dresden R. Woodrow Setzer US Environmental Protection Agency


The model is implemented as an R function, and called via ode()


ode function in deSolve

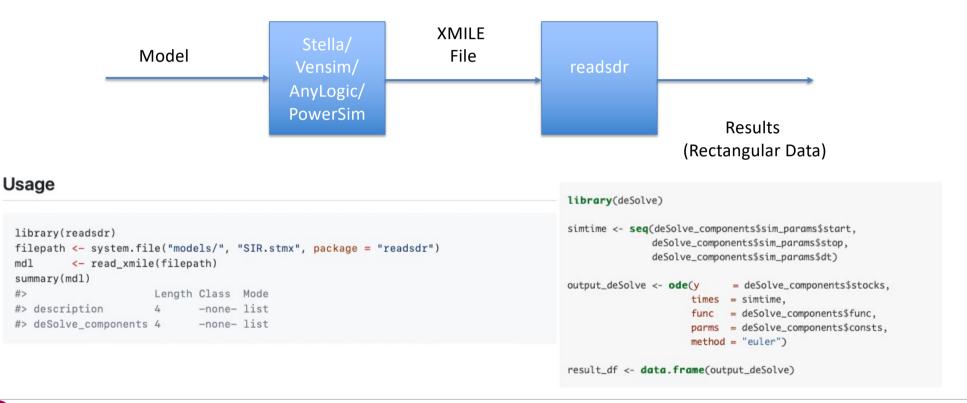

Argument	Description	
У	The initial (state) values for the ODE system, a vector. If y has a name attribute, the names will be used to label the output matrix	
times	Time sequence for which output is wanted; the first value of times must be the initial time	
func	 An R function that computes the values of the derivatives in the ODE system at time t. It must be defined as: func <- function(t, y, parms,), where t is the current time point in the integration and y is the current estimate of the variables in the ODE system. If the initial value y has a names attribute, the names will be available 	S
	 inside func. parms is a vector or list of parameters; (optional) are any other arguments passed to the function. 	
	• The return value of func should be a list, whose first element is a vector containing the derivatives of y with respect to time, and whose next elements are global values that are required at each point in times. The derivatives must be specified in the same order as the state variables y.	
parms	Parameters passed to func.	
method	Normally a string to indicate the integration method, for example, "euler", "rk4", "ode23", "ode45".	
returns	A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the second element of the return from func, plus an additional column (the first) for the time value. This can be easily converted to a data frame object using the function data. frame()	

sim <-data.frame	<pre>(ode(y=stocks,</pre>	
	times = simtime,	
	func = sirh,	
	parms = auxs,	
	<pre>method = "euler"))</pre>	
	method = "euler"))	

¢

Simulation output

> sim


A tibble: 801 × 16

tim	e S	1	E R	Н	IR	RR	EH	RRH	Contacts	Infectivity	ALOS	HospFrac	VaccFrac	Check…¹	Ν	
<db1< td=""><td>> <dbl></dbl></td><td><db1></db1></td><td>> <dbl></dbl></td><td><db1></db1></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><db1></db1></td><td><db1></db1></td><td><db1></db1></td><td><db1></db1></td><td><db1></db1></td><td><db1></db1></td><td><dbl></dbl></td><td></td></db1<>	> <dbl></dbl>	<db1></db1>	> <dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>	
10	<u>99</u> 990	10	0	0	10.0	3.3	0.033 <u>3</u>	0	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
2 0.12	5 <u>99</u> 989.	10.8	8 0.413	0.004 <u>17</u>	10.8	3.57	0.036 <u>1</u>	0.000 <u>298</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
3 0.25	<u>99</u> 987.	11.7	0.859	0.008 <u>64</u>	11.7	3.87	0.039 <u>1</u>	0.000 <u>617</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
4 0.37	5 <u>99</u> 986.	12.7	7 1.34	0.013 <u>5</u>	12.7	4.20	0.042 <u>4</u>	0.000 <u>961</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
5 0.5	<u>99</u> 984.	13.8	8 1.87	0.018 <u>6</u>	13.8	4.55	0.045 <u>9</u>	0.001 <u>33</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
6 0.62	5 <u>99</u> 983.	14.9	2.44	0.024 <u>2</u>	14.9	4.92	0.049 <u>7</u>	0.001 <u>73</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
7 0.75	<u>99</u> 981.	16.2	2 3.05	0.030 <u>2</u>	16.2	5.33	0.053 <u>9</u>	0.002 <u>16</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
8 0.87	5 <u>99</u> 979.	17.5	5 3.72	0.036 <u>7</u>	17.5	5.78	0.058 <u>4</u>	0.002 <u>62</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
91	<u>99</u> 977.	19.0) 4.44	0.043 <u>6</u>	19.0	6.26	0.063 <u>2</u>	0.003 <u>12</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
10 1.12	<u>99</u> 974.	20.5	5 5.22	0.051 <u>2</u>	20.5	6.78	0.068 <u>5</u>	0.003 <u>65</u>	10	0.1	14	0.01	0	<u>100</u> 000	1e5	
# wit	n 791 moi	re rov	vs, and	abbrevi	ated vo	ariable	e name [:]	¹ CheckSum								
4	Superior L C		>> +=													

i Use `print(n = ...)` to see more rows

readsdr package https://github.com/jandraor/readsdr

1. ggplot2 > 2

deSolve

📏 5. Shiny

- A map function is one that applies the same action/function to every element of an object (e.g. each entry of a list or a vector, or each of the columns of a data frame)
- The naming convention of the map functions are such that the type of the **output** is specified by the term that follows the underscore in the function name
- Consistent with the way of the tidyverse, the first argument of each mapping function is always the data object that you want to map over, and the second argument is always the function that you want to iteratively apply to each element of the input object

- map(.x, .f) is the main mapping function and returns a list
- map_df(.x, .f) returns a data frame

4. purrr

- map_dbl(.x, .f) returns a numeric (double) vector
- map_chr(.x, .f) returns a character vector
- map_lgl(.x, .f) returns a logical vector

map functions support iteration...

Sensitivity Sweep

```
82 # Sensitivity sweep, modify 2 params
83 NSIMS <- 10
84 s_contacts <- sample(3:20,NSIMS,replace = T)
85 s_vacc <- runif(NSIMS,min=0,max = 0.10)</pre>
```

```
> s_contacts
[1] 15 19 14 17 10 5 8 4 13 9
>
>
> s_vacc
[1] 0.03728884 0.05089462 0.06664778 0.06672938 0.09171309 0.05087442 0.07575453 0.03544004
[9] 0.03325082 0.01643648
```


R Code to support sensitivity sweep

```
run_sirh <- function(start=0,</pre>
37
                                                         56
                                                              # initialise vector of auxiliaries
38
                            finish=100.
                                                        57
                                                                       <- c(contacts=contacts, # Contacts
                                                              auxs
39
                            step=0.125,
                                                        58
                                                                           i=infectivity.
                                                                                               # Infectivity
40
                            contacts=10,
                                                        59
                                                                           D=duration.
                                                                                               # Duration of infectiousness
                                                                           N=N,
                                                                                               # Total Population
                                                         60
41
                            infectivity=0.1,
                                                                           ALOS=ALOS,
                                                                                               # Average length of stay
                                                         61
42
                            duration=3,
                                                        62
                                                                           HF=HF,
                                                                                               # Hospitalisation Fraction
43
                            N=100000.
                                                        63
                                                                                                # VaccinationFraction
                                                                           VF=VF)
44
                            ALOS=14,
                                                        64
45
                            HF=0.01.
                                                        65
46
                            inits=c(N-10, 10, 0, 0),
                                                        66
                                                              sim <-data.frame(ode(y=stocks,</pre>
47 -
                            VF=0.0){
                                                        67
                                                                                    times = simtime.
48
                                                        68
                                                                                          = sirh.
                                                                                    func
                                                        69
49
      simtime <- seq(start, finish, step)</pre>
                                                                                    parms = auxs,
                                                        70
                                                                                   method = "euler"))
      # initialise vector of stocks
50
                                                        71
51
      stocks <- c(S=inits[1],</pre>
                                                        72
                                                              as_tibble(sim)
52
                     I=inits[2].
                                                        73 - }
53
                     R=inits[3],
54
                     H=inits[4])
```


map2 Iteration code...

```
87
  count <- 1
88
   # map2 is an iterator over two vectors
89 - sens <- map2(s_contacts,s_vacc,~{
      message(glue("Sim {count} contacts {.x} vacc Fr {.y}"))
90
      out_sim <- run_sirh(contacts = .x,VF = .y) %>%
91
92
                 mutate(Run=count) %>%
93
                 select(Run, everything())
94
      count <<- count+1
95
      out sim
96 ^ })
97
98 full_sims <- bind_rows(sens)</pre>
```

Full results

> full_sims

A tibble: 200,250 × 17

		Run	time	S	I	R	Н	IR	RR	EH	RRH	Contacts	Infectiv… ¹	ALOS	HospF² VaccF³
		<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<db1></db1>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<db1></db1>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl> <dbl></dbl></dbl>
	1	1	0	<u>99</u> 990	10	0	0	18.0	3.3	0.033 <u>3</u>	0	18	0.1	14	0.01 0.007 <u>53</u>
	2	1	0.125	<u>99</u> 894.	11.8	94.5	0.004 <u>17</u>	21.3	3.90	0.039 <u>4</u>	0.000 <u>298</u>	18	0.1	14	0.01 0.007 <u>53</u>
	3	1	0.25	<u>99</u> 797.	14.0	189.	0.009 <u>06</u>	25.1	4.62	0.046 <u>7</u>	0.000 <u>647</u>	18	0.1	14	0.01 0.007 <u>53</u>
	4	1	0.375	<u>99</u> 700.	16.6	283.	0.014 <u>8</u>	29.7	5.46	0.055 <u>2</u>	0.001 <u>06</u>	18	0.1	14	0.01 0.007 <u>53</u>
	5	1	0.5	<u>99</u> 602.	19.6	378.	0.021 <u>6</u>	35.1	6.46	0.065 <u>3</u>	0.001 <u>54</u>	18	0.1	14	0.01 0.007 <u>53</u>
	6	1	0.625	<u>99</u> 504.	23.2	473.	0.029 <u>5</u>	41.5	7.64	0.077 <u>2</u>	0.002 <u>11</u>	18	0.1	14	0.01 0.007 <u>53</u>
	7	1	0.75	<u>99</u> 405.	27.4	567.	0.038 <u>9</u>	49.0	9.03	0.091 <u>3</u>	0.002 <u>78</u>	18	0.1	14	0.01 0.007 <u>53</u>
	8	1	0.875	<u>99</u> 306.	32.4	662.	0.050 <u>0</u>	57.8	10.7	0.108	0.003 <u>57</u>	18	0.1	14	0.01 0.007 <u>53</u>
	9	1	1	<u>99</u> 205.	38.2	757.	0.063 <u>0</u>	68.3	12.6	0.127	0.004 <u>50</u>	18	0.1	14	0.01 0.007 <u>53</u>
1	LØ	1	1.12	<u>99</u> 103.	45.2	851.	0.078 <u>4</u>	80.6	14.9	0.151	0.005 <u>60</u>	18	0.1	14	0.01 0.007 <u>53</u>
#	¥	with	200,24	40 more	rows,	2 more	e variabl	.es: Ch	neckSur	n <dbl></dbl>	, N <dbl></dbl>	, and abbi	reviated var	riable	names

¹Infectivity, ²HospFrac, ³VaccFrac

i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names


Summary, Peak Cases

		> S	umm			
		# A	tibbl	le: 250 ×	<u> </u>	
			Run	PeakH	Contacts	VF
			<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>
103	summ <- full_sims %>%	1	1	605.	18	0.007 <u>53</u>
104	group_by(Run) %>%	2	2	439.	19	0.046 <u>3</u>
		3	3	227.	19	0.096 <u>1</u>
105	summarise(PeakH=max(H),	4	4	7.92	8	0.051 <u>2</u>
106	Contacts=first(Contacts),	5	5	0.141	3	0.094 <u>3</u>
		6	6	0.827	7	0.095 <u>3</u>
107	VF=first(VaccFrac)) %>%	7	7	154.	17	0.098 <u>0</u>
108	ungroup	8	8	217.	15	0.067 <u>5</u>
200		9	9	420.	9	0.007 <u>15</u>
		10	10	73.4	9	0.037 <u>3</u>
			والله أسبب	210		

... with 240 more rows

i Use `print(n = ...)` to see more rows

p3 <- ggplot(summ,aes(x=Contacts,y=VF,size=PeakH,colour=PeakH))+
geom_point()+
scale_color_gradient(low="blue", high="red")+geom_jitter()</pre>

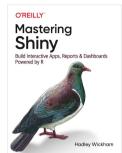
1. ggplot2

deSolve

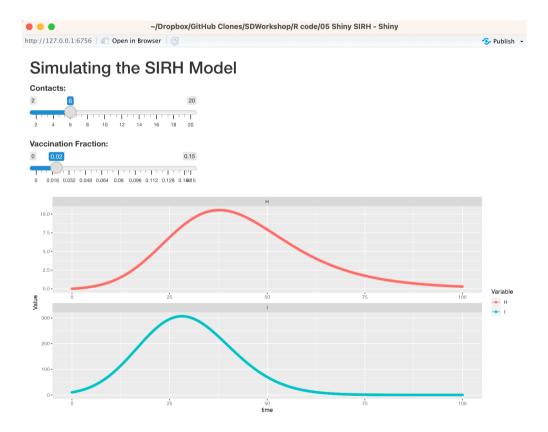
5. Shiny

Spreadsheets are closely related to reactive programming: you declare the relationship between cells using formulas, and when one cell changes, all of its dependencies automatically update.

Hadley Wickham – Mastering Shiny


OREILLY Mastering Subjects Mastering Subjects Mastering Mast

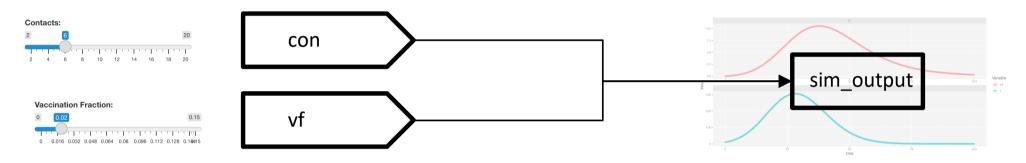
https://mastering-shiny.org



Shiny (Wickham)

- Shiny is a framework for creating web applications using R code.
- It is designed primarily with data scientists in mind, and to that end, you
 can create pretty complicated Shiny apps with no knowledge of HTML, CSS,
 or JavaScript.
- On the other hand, Shiny doesn't limit you to creating trivial or prefabricated apps: its user interface components can be easily customized or extended, and its server uses reactive programming to let you create any type of back end logic you want.
- Shiny is designed to feel almost magically easy when you're getting started, and yet the deeper you get into how it works, the more you realize it's built out of general building blocks that have strong software engineering principles behind them

The App


shinyApp(ui, server)

The ui object

```
ui <- fluidPage(
10
     titlePanel("Simulating the SIRH Model"),
11
     sliderInput("con", "Contacts:",
12
                  min = 2, max = 20, value = 6
13
14
     ),
15
      sliderInput("vf", "Vaccination Fraction:",
                  min = 0, max = 0.15, value = .02
16
17
     ),
18
     plotOutput("sim_output")
19
```

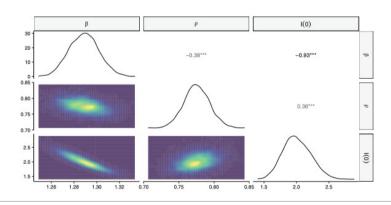
The reactive graph – spreadsheet cell analogy

- Any change to an input control
- Leads to a reaction in the server code
- Which then updates the output

The Server

```
21 - server <- function(input, output, session){</pre>
22
      message("\nStarting the server...")
23 -
      output$sim_output <- renderPlot({</pre>
24
        sim <- run_sirh(contacts = input$con,</pre>
25
                         VF = input vf) \%
26
                  select(time,I,H) %>%
27
                  pivot_longer(cols = -time,
28
                                names_to = "Variable".
29
                                values_to = "Value")
30
31
        ggplot(sim,aes(x=time,y=Value,colour=Variable))+
32
          geom_point()+geom_line()+
33
          facet_wrap(~Variable,nrow = 2,scales="free")
34 -
      })
35 - }
```

Outputs



- R can integrate in a flexible way within your System Dynamics workflow
- Visualization, summaries, modelling, sensitivity and web apps
- Can also support calibration workflows - Andrade and Duggan 2021

MAIN ARTICLE A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo

Jair Andrade* 💿 and Jim Duggan 💿

