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Abstract

The reasons for being interested in the effects of pertur-
bations on System Dynamics models are discussed. Various
important types of perturbation are indicated. A first order
model of the effects of system perturbations is then discussed and
its implications considered.

The possibility of classifying models by their response to
perturbations is then considered in the light of the guidance
they may give as to the utility of the model.

Introduction

System Dynamics models are essentially deterministic continucus
simulation models that attempt to model socioeconomic systems as
non~linear control systems (Forrester, 1961). In practice becausc
of the uncertainties attendant on such modelling it is usual to
test the model with various ad hoc perturbations, e.d. input
noise, parametier changes to test the 'robustness' of the model
(Coyle, 1974). Puyblished literature suggests that this type of
testing which relies heavily on the experience and intuition of
the modeller is by no means satisfactory (Boyle 1973, Salerno
1973, Sharp 1974).

It therefore seems worthwhile to consider the general
problem of perturbations in System Dynamics models in oxder to

a) examine how different types of perturbation affect S.D.
models.

b) to formulate methods of computing the effects of pertur-
bations-

c) to suggest guidelines for assessing model 'robustness', since

the justification of results derived from any particular
model always scems in practice to rely heavily on this
concept.

Types of Perturbation

A number of different types of perturbation are of interest
in assessing the 'robustness' of a model. These are:-

i). Changes in initial conditions.

Initial conditions are rarely known with accuracy and
therefore it is of ten of interest to know the effects on
system performance of specific changes in initial copditions
or of stochastic uncertainty in them.
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ii). Changes in System Parameters.

Model parameters whether obtained by statistical
methods or by the more usual process of interview are always
subject to uncertainty and it is therefore of interest to
know the effects of specified changes or stochastic
uncertainty in parameters.

Furthermore it is usual in formulating model equations
to ignore the effects of certain variables that are felt to
be unimportant. This can be viewed as setting certain model
parameters that are possibly non-zero equal to zero (Sharp 1974).

iii). Stochastic Effects.

Besides the stochastic uncertainties alrcady mentioned
we may be interested in the effects of introducing noise
terms into individual equations. Such terms may be
considered as representing either measurement erroxr or
structural error, the latter generally being more important
(Malinvaud, 1970).

iv). Aggregation Erroxr.

System Dynamics models are necessarily highly aggregated.
The process of aggregation however can introduce exrors in
that the results are derived from an aggregate model can
differ from those that would be obtained from aggregating
the results of models from individual subsystems. This form
of error can be regarded as equivalent to the effects of a
cextain perturbation on the aggregate model equations
(Sharp, 1974).

Estimating the Effects of Perturbations.

The perturbations described above are either isolated (initial
condition errors) or continuously acting (errors in parameters,
etc.) In theory they could all be treated by applying Lyapunov
methods to the relevant perturbation equation for arbitrarily
large perturbations. Since S.D. models are however non-linear and
no general methods exist for determining Lyapunov functions for
such systems this approach - though it provides an interesting
conceptual framework - does not appear likely to provide any
usable techniques for estimating the effects of perturbations.

The obvious method of obtaining an estimate of the effect
of perturbations is to use a first order approximation method.
The application of such methods in numerical analysis has been
discussed by %enrici 1963 and in control system design by among
othexs Tomovi¢ and Vukobratovié 1972. Their application to System
Dynamics models is discussed in (Sharp, 1974) and (Burns and
Malone, 1974).

By virtue of their special structure System Dynamics models
(c.f. Sharp, 1974) can be put in the form

X = H(En’ a) (1)
with the initial state X, specified
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where X is a vector of model parameters.

-

Consider the system

- 3 2
In+1 H(Zn’ ) Pn 23
with initial state Yo

where'pn is some perturbation.

In what follows we assume that along the trajectory x the
function H is every where differentiable. This assumption is not
an important restriction and simplifies the analysis. If we write

1]’-_511 Ry - (3)
then from (1) and (2) we have to first order
%g+1 - Jn y% % En (4)
where Iy is the matrix (gfi)
(T%5)
X=X

- =n
Solution of (4) leads to
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Depending on the type of perturbation in which we are
interested p_ takes on different forms e.g. for the case of an
error in parameters

feer Yo T HGEL M) (6)

we have to first order that

o =k ) 2
where Kn = E)Hi%
()=

whilst in the case of stochastic errors

we have En = gn (8)

where En is some random variable.

If suitable assumptions are made about the correlation
properties of £ , the covariance matrix of ¥ 1is easily determined
(Sharp, 1974) if the case of aggregation error the expression for

- is more complex in form and depends on the evolution of the
subsystems of the aggregate model which is of course, ususally
unknown. It follows then that even to first order approximations
are needed to make possible the estimation of the aggregation
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error (Sharp, 1974).

The First Order Estimates

Equations (4) and (5) are of course only strictly valid for
infinitesimal perturbations. They do however, give a guide as
to the effects of perturbations on the model and perhaps more
importantly, they show that apparently different perturbations
can be treated within the same general framework rather than by
a series of ad hoc modifications to the model as in the
conventional approach.

It seems plausible that where analysis on the basis of first
order analysis the value of f; is small that the system may be
said to be 'robust'. The first order analysis should then provide
a basis for assessing whether this important design objective is
met.

Examination of (5) shows that the effects of perturbations
n

are propagated via the matrix products 7N J_ and it therefore is
of interest to enquire whether bounds f8r T T“ can be deduced
via bounds for thesec matrix products. One pogsible appreoach is
via matrix norms in particular the logarithmic norm (Brauer, 1967)
which seems especially suited to the matrices that arise from
S.D. models. In most cases however, it would seem likely that
the bounds thus derived are likely to be far too coarse to be
useful. One interesting possibility is that certain bounds for
matrix products given by Ostrowski, 1966 might allow the
construction of more useful bounds.

Computation

Since :the first order theory locates the calculation of the
effects of different perturbations in a general framework it
offers the possibility of reducing the computational time
required to assess the effects of different types of perturbation
on the model as well as providing a systematic way of deriving the
necessary estimates. As can be seen from equation (5) the method
requires the calculation of the sequence of matrix products

n
g:Jr which is easily done iteratively. Alternatively an iterative

method based on equation (4) can be used. Clearly the use of
equation (5) to determine the effects of parameter errors enables
the calculation of the effects of initial value errors tec be
carried out with little additional effort whereas with
conventional methods that deal with the different errors
separately this is not the casec.

In the case of stochastic errors the same matrix products
arise so the first erder approach allows considerable economies
of computation if various different types of errors are dealt with
simul taneously. In addition approximations appear to be possible
that either reduce the number of matrix products to be calculated
or enable them to be calculated approximately with much less
computation (Sharp 1974). Such reductions in computational
requirements may in their turn make it more feasible to use,
for example, optimization programs in conjunction with S.D. models.
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The effects of Perturbations on Models

As remarked above the propagation of perturbations is to
first order dependent on the matrix products

Y%Jr' It is possible for fixed q and increasing n to envisage
q. '
2 extreme possibilities.

n
(1) as n increases Eqr Pq.y tends to zero
so that @; remains bounded.

n
(2) as n increases E J, Py-1 grows exponentially,

Since we are dealing with nonlinear systems other types of
behaviour are of course possible.

In case (1) to first order at least the effecis of
perturbations on the model remain bounded with time and it seems
plausible that the effects of the various types of error at least
if sufficiently small are unimportant. Thus we may expect that
for s pecified inputs at least the model is a relatively good
predictor. Thus in the case of specified parameter errors we
might for a particular variable find a situation as depicted
in Ligs Y.

First Orderx
Estimate of
Effects of
Parameter errors

I
—
— P

— - Model
7 Output

Time

Fig. 1

For case (2) on the other hand, we would expect the model to be
a poor predictor over long time spans because of the exponential
build up of perturbations. 1In practice of course, this build up
would eventually be halted by the effectis of nonlinearities but
before that time substantial errors may have already arisen.
Thus for specified parameter errors in this case the error build
up might be as in fig. 2,



H
Fig. 2

For this second case first order analysis is clearly
inadequate for calculating actual bounds, though it could
obviously be useful for indicating that problems were likely to
arise when perturbations were considered. It is clear, however,
that for systems of this type the connexion between the model
behavicur and system behaviour may beyond a certain time horizon
(say the point A in fige. 2) be very tenuous and thus the
interpretation of model output may have to be very different to
that applied in case (1).

It is, perhaps, interesting from this point of view to con-
sider the 'World Dynamics' controversy. For models of type
(2) we may expect from equation (5) that if the model is sensitive
to errors in one parameter it is likely to be sensitive to errors
in other parametexrs and also in initial conditions., This is
certainly true for World Dynamics model as evidenced by
(Burns and Malone, 1974), (Salerno, 1973), (Boyle, 1973) and
(Cole and Curnow, 1973).
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