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ABSTRACT , ‘
This paper suggests continuous mathem at.lcal functions thaF
can be used to replace DYNAMO supplied TABLE functions
for most modelling applications where non-linear functions
are needed. The proposed functions are selected for the
ease of control of their slopes and limit parameters. Their
use may help to increase the size of the model that can be
handled on small systems while also avoiding the discon-
tinuties of the TABLE functions they replace.

1. RATIONALE ,
Many types of non-linear functions are employed in Systemg
Dynamics models to represent cause and effect relationships
between pairs of variables. These relationships Of‘e‘} abstract
complex real world processes which do not involve significant
delay as compared with the other delays in the conceptual
systems being modelled.

The computer code used for simulating system dynamics
models, DYNAMO, offers a rather sophisticated method for
representing the non-linear relationships of the.model through
the use of TABLE functions. These functions allow the
user to construct a non-linear relationship graphically. The
co-ordinates of the turning points of the fu.ncnon are, th?ﬂ,
stated in the arguments of the TABLE function macro which
computes a value of the dependent variable for any value of
the independent variable within the specified range. This is
done by interpolating over the segment Of the f““CUP" that
contains the value of the independent Vvariable. Figure |
shows a DYNAMO representation of 2 typical nonlinear
function.

Later versions of DYNAMO offer several variations of the
basic function described above. For eXample, there is
TABHL which uses the extreme values When the specified
range is exceeded. There is TABXT, which extrapolates the
last two extreme values when the rangeé is exceeded, and
TABBL which passes a polynomial through the specified
points and interpolates on this polynomial instead of on the
segments of a discontinuous function as in the previous
cases. The properties of the polynomial beyond the specified
range are, however, uncertain’ .

The advantages of the DYNAMO supplied TABLE functions
include the ease with which they can be developed, the
facility for changing their parameters and Shap"? in the rerun
mode, and the possibility of representing a8 wide variety of
shapes.
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Figure 1: Table function in DYNAMO.

The DYNAMO supplied TABLE functions also have a few
disadvantages. Firstly, they are discontinuous which may
lead to strange behaviour when their derivatives are computed
in a model. Secondly, it is quite cumbersome to conduct
parameter sensitivity tests for a TABLE function. All co-
ordinates of the function must be supplied every time a change
in its slope is made. Thus, a slight misspecification may often
cause a change in shape that violates the original assumptions
made for the function. Thirdly, the interpolation procedure
involved incorporates several procedural steps which take
much computer time. Finally, many versions of DYNAMO,
especially those for small computing systems can handle
only a limited number of TABLE function values which
places an additional limit on the size of the model that can
be simulated.

This paper suggests several continuous functions that can be
used in System Dynamics models to represent non-linear
relationships and that have some advantages over the DYNAMO
supplied TABLE functions. Also when DYNAMO is not
available and the user cannot write an interpolation routine,
these relationships might be the only type of functions avail-
able for representing the non-linear relationships.

2. GENERAL CHARACTERISTICS OF NON-LINEAR

RELATIONSHIPS USED IN SYSTEM DYNAMICS
The nondinear relationships used in system dynamics models
are often normalised with respect to a measurable set of
“‘normal’”’ operating conditions. A typical equation involving
TABLE functions may appear as follows:

RV KL=LV.K*FRN*M].K*M2 K*M3 K
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Where RV is the rate of change. LV, the level, FRN the
normal fractional change, M1, M2 M3 are the various multi-
pliers represented by TABLE functions. Normal values of
these multipliers are invariably equal to one, although some-
times (as for example when a rate represents the net flow
into a level) zero might be used as the normal value and
FRN omitted: However this would call for modifying the
dimensions of at least one of the multipliers.

As far as the slope of these functions is concermed, the non-
linear functions most commonly used can be divided into 3
main categories each of which has 2 sub-categories. The
three main categories are: convex functions, concave functions
and S-shaped functions. Each of these can either be positively
sloping or negatively sloping. Furthermore, the S-shaped
functions may have either (1,1) or (0,0) as normal value.

Besides the normal value, the other points of interest in a

TABLE function are its extreme values. The lowest extreme
value of a concave function with a positive slope is usually
zero, while that for one with a negative slope is usually a
finite, but relatively large, number. The upper extreme values
of such functions are infinity and zero respectively, but the
values of the independent variables at which these extremes
are approached are often not precisely known. These extremes
are, however, determined by the slope of the concave function.

It is customary to use zero or near zero as the lowest extreme
value in the case of a simple convex function with positive
slope and a reasonable upper saturation limit which is often
not precisely known. A convex function with a negative
slope may sometimes be used when representing the effect
of availability of fixed resources. In such a case, both extreme
conditions are known and are usually one and zero respectively.

S-shaped functions are widely used to represent behavioural
responses based on experience. The positively sloping Sshaped
functions often have a near zero lower limit and an upper
limit which is also not strictly specified. In case of a negatively
sloping function, the extreme value corresponding to the
lowest value of the independent variable must be specified
while the other extreme value is near zero. The slope of this
curve would determine when the later extreme value app-
roaches zero. In both positively and negatively sloping cases,
the - steepness of the function is often a relatively more im-
portant parameter than its extreme values, although a system
may be insensitive to both.

The S-shaped functions with a (0,0) normal value are usually
symmetrical around this value. When these functions represent
a policy, the modeller may wish to change their slope with,
or without, changing the specified extreme values.

Many other irregularly shaped functions may also be used
in System Dynamics models. But the more complex the shape
of a function the greater the number of assumptions that it
incorporates and the longer the rope to hang the modeller
with. The use of irregularly shaped functions, therefore,
is not favored by the authors. In the following sections well
behaved mathematical functions, which meet the criteria
of shape and extreme value for the right types of non-linear
functions discussed abave, will be proposed.

3. CONCAVE FUNCTIONS ‘
These functions may be positively or negatively sloping.
They should pass through the point where both dependent

and independent variables assume a value of unity, and the
user should be able to specify their lowest extreme value
and slope. The following formula is recommended for a
positively sloping concave function:

Y=N+(1-N)*(X**SLP)

where, Y = Dependent variable
X = Independent variable
N = Value of Y at X=0
SLP = Slope parameter (SLP > 1)

Figure 2 shows the behaviour of this function for N=0 and
for different values of SLP. The function reduces to a straight
line when SLP=1 and to a horizontal line passing through
the (1.1) point when SLP=0. The steepness of the function
rises when SLP is increased.
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Figure 2: Concave Function with a Positive Slope
Y=N+(I-N)(X**SLP)
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passes through (1,1) when N=1. The characteristics of this
function are illustrated in Figure 3.

3.
I

These functions may also be positively or negatively sloping.
They should pass through the point (1,1) and their slope
should be controllable. The formula found appropriate for the
positively sloping convex function is the same as that for
the positively sloping concave function, although the slope
parameter should always be <.

_________ R 4. CONVEX FUNCTIONS
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The slope of this function is controlled by the lowest extreme Figure 4: Convex Function with a Positive Slope
value N. The function becomes a horizontal straight line which Y=N+(1-N)(X **SLP)
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where, Y
N
SLP

Dependent variable
Value of Y at X=0 and
Slope parameter (SLP < 1)

Figure 4 shows the characteristics of this function for various
values of SLP. The function is neutralised into a horizontal
line when SLP=0.

The negatively sloping convex function can be represented
by the following formula:
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Figure 5: Convex Function with a Negative Slope
Y = NN} (X ** (LOGN(SLP)))

Y=N-(N)*(X**(LOGN(SLP))) SLP >0

0<X <l
where, Y = Dependent variable
N = Valueof Y at X=0
SLP = Slope parameter

This function will not pass through (1,1) point but through
(1,0). 1t is useful for representing capacity constraints such
as the effect of land fraction occupied on housing construction
rate (2). Figure 5 shows the characteristic behaviour of this
function for various values of N and SLP. It is, however,
cumbersome to neutralise this function using the initial value
and the slope parameter. When N=1 and a very large value is
used for SLP, the function will be nearly 1.0 for all values of
X < 1, but this value will suddenly drop to zero when X=1.
The use of a switching function, instead, is recommended.
The value of the function becomes negative when X > 1.0,
but when the capacity constraint is represented by a fraction,
the maximum value of X for this function will never exceed
one.

5.  S-SHAPED FUNCTIONS

Sshaped functions are perhaps the most widely used non-
linear functions in System Dynamics modelling. The S-shaped
curve inflexes around a normal condition and attempts to
translate the behavioural responses of a decision-maker as
the condition deviates from normal. The nomnal condition
often represents unity value for both dependent and in-
dependent variables when the rates of inflow to, and outflow
from, a level are separated and zero when they are not. These
functions can be positively as well as negatively sloping.
Mathematical formulations for each of these cases are dis-
cussed below:

‘5.1 Positively Sloping S-shaped Functions

The following function is suggested when the normal con-
dition occurs at X=1, Y=1:

Y=N/(1+(N-1)(SLPXEXP(-LOGN(SLPXX)))) SLP > 1

where, Y = Dependent variable
X = Independent variable
N = Upper limit for Y
SLP = Steepness parameter when N is fixed

Figure 6 shows the behaviour of this function for various
values of N and SLP. It should be noticed that Y always
has a small positive value when X=0, which is a useful property
as this would be needed for most applications. The function
would give a value of Y=1 for all values of X when SLP=1].
Thus, it can be easily neutralised when a model is being
tested.

A positively sloping S-shaped function can be constructed
as follows when the normal condition occurs at X=0, Y=0:

Y=((2*N)/(1+EXP((-LOGN(SLP)}(X))))-N

19



Ne2

L}
1
SLP-10 !
Ne2 ' '
SLP-300 SLPal = !
. ' i
"
' 1
3 1
+ )
+ 1
SLPs10000 1 '
0.- ) +
S . » . 0
t - ~N L) L 4
} S .000 T = -2 [ ] = 2 1 = ~-2.000 T = ~-.3jol2 ¥ = 1
I = .500 T = <487 SLP = 10 I = -1.500 1 = -.93u7 SLP = 0
1 = 1.000 Y = 1.000 I = =1.000 1 = -.3182
I = 1.500 T = 1.51y I = -.500 ¥ = =.5195
} S 2.000 T = 1.8 I = .000 | 000U
1 = 2.500 1 = 1.939 I = .500 t = <5195
1 = 3.000 r = 1.960 I = 1.000 t = 8192
1 = 3.500 r = 1.9Y¢ I = 1.500 T = ~9287-
S .00y T = 1.998 I = 2.000 | B .9802
e ok 3k 3ok ok 3 3 3k e 3k 3 2k 3k e ke s e 36 ok ok sk ke 3 o ke ok ok 3k o i ok e ok ok e sk i okl ok ok ok ok s 8o ok 3¢ 3¢ s ok o8 o e o ok 3k ok 3k o o o3 ok ok e e ke 3k de ok ok ok ok el ke sk ok ook S ok e sk ok oK sk ok sk ok ok ok
1 = .000 T = .007 [ = 2 ' 1 = -2.000 f = -1l.%0 ] a2
L .500 Y = <10y SLP = 300 L = =-1.500 { = -7 sSLP =1Q
} 1.000 1 = 1.000 1 = =1.000 { = =l.o0Jdo
1 = 1.500 T = 1.891 L = -.530 T = -1.049
1 = 2.000 ¥ = 1.993 r = 000 { = -900
= 2.500 f = 2.000 1 = .500 T = 1.039
3 = 3.300 T = 2.000 I = 1.000 t = 1.646
T = 3.5u0 f = 2.0v0 1 = 1.500 r = 1.327
r = 3.000 Y = 2.000 I = 2.000 t = 1.900
¢ 3 o ok 0 ok ok 3 ol 3 3k s o e ok o e s ol ofe o sk o ok ok ok o ok o ok ok sje ke ok K ok ke ok sk ok ok ok ke ok ok kK s ¢ s a0 ke e ok ok 2 2k ok 3 s ok o e 3 e o ol ol ol e b o ke s ok ok o ok o ok o o ke o o o ok ok oK ok ol ok ok ok
| . 000 T = -0vo ] = 2 X = -2.000 t = -3.921 L] = 3
1 = .500 T = -020 SLF = 10000 L = -1.500 T = =3.7% SL® = 10
1.000 y = 1.000 T = =-1.000 YT = -3.273
T = 1.5u00 T = 1.350 I = -.500 t = -2.078
I = 2.000 Y = 2.000 I = -000 r = .000
I = 2.500 Yy s 2.0u0 I .500 T = 2.078
r = 3.000 T = 2.000 1 = 1.000 t = 3.213
X = J.s500 B ] 2.000 L = 1.500 { = 3.755
1 = 4.000 2.000 { = 2.000 T = 3.941
e 30 30 o 3 e o0 3 2 3 s 3 e ok o e 3 e o ok ok ok ok ke sk ok e o ok ok ok ok 86 ok ok oK ok sk ke ok ke ok ok ok ok 530 o o 3 ok she e ok e ok e S ol 3k e ok e e sk ok ol 3 s ek sk ok kol ok sk ok ok ol ek ke ke R e ok ko
r = <000 I -Q039 L] = 2 . . . .y
P = .300 v o= 208 SLP = Su . Figure 7: S-Shaped Function with a. Positive Slope and
I = 1.000 1 = 1.000
1 = 1.500 Y = .75z Normal at (0,0)
I = 2.000 1 = 1.461 *,
1 = 21500 Yo+ 1l ((2*N)/(1 + EXF((-LOGN(SLF)) (X)I/)N
1 = 1.00v Y = 1.999
oo MR 4 FLxed SLP; N is varied
T = “.000‘ 2.000
3 3k 2 e 30 ok o 2 ok o e 3k ok o o 3K i e o ok ko 3 I ok s s ok o ok o e K ok ol oK ok K ok ok Sk ok Kok kK
S . Q00 T = .Q30 L] =3 .
x o= .500 1= e SLE = 50 where, Y = Dependent variable
1 = 1.000 1 = 1.000
B 1.50u Y = 2.339 = i
Tl MDA S+ X Independent variable
I = 2.500 t = 2.yu3 -
1 = i.u0u t = 2,938 N = Upper and lower extreme values
3.50u I ;.000 X
1 - alo0u r o= 3.000 SLP = Slope parameter when N is fixed
dkpkakgdkokokk kR kR Rk Rk R R Rk R kkkokk kR kR kR Rk Rk Rk Kk
r = .ovu Yy = .026 . e Figure 8 illustrates the behaviour of this function for a given
L T o3 sLp = 20 value of N and for different values of SLP. Figure 7 shows
1 1.00v 1 1.0uL
i 1 2l R its behaviour when SLP is fixed and the value of N is varied.
T o= 2.500 T =  3.yee The function is neutralised when SLP=0.
T = 3.000 Y = 3.995
) S 3.500 r = 3.99y
y o+ 4.000 Y o= o000 5.2 Negatively Sloping S-shaped Functions

L] * Wk * L X 1] * . . .
idbddtd bt S hiiiiibiebibid i bbbt A negatively sloping S-shaped function can be constructed

Figure 6: S-Shaped Function with a Positive SIope and Normal as follows when the normal condition occurs at X=1, Y=1
at(1,1)

Y = NJ{I + (N-1) (SLP) (EXP-LOGN(SLP) (X)))) Y=(N/(N-1D)((X**SLP)+(I/(N-1)))
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Figure 9 illustrates the behaviour of this function for different

kR Rk kR R ERE Rk kR kR Rk kR X

jeure 9: S-Shaped Function with a Negative Slope and
values of N and SLP. The function can be neutralised when Feu Norr;‘zle at(1.1) &

{
SLP=0. Y = (NJ(N-1)}{{{X **SLP) +(1}(N-1)})

kEERERERRERRRREREKERERKE

N
Sup

N
SL¥

non

" n

[Tl

FAEREXEEEXERBRERRREEEERAES

L]
SLE

<

3

2
u

3
"

L7}
u

X = =2.000 Yy = -.9z3 N = 1 ) VY] 1 = 2.0uU
X = -1.500 Y = -_.835%s SLP = § X = -500 Y =  1.ebv
X = =1.000 Yy = -—.bbb7 A= 1.0u0 Yy = 1.0y
= -.500 1 = —_382 = 1.500 y = 615
P S .0us Yy = .0000v rA o= 2.00v Yy = .4Uu
X = .500 Y = ~3620 X = 2.5u0 Y = .27v
1 = 1.u0U y = 6667 3 = 3.06¢C Y o= .i0u
b 1.500 y = ~.8358 R 3.5u0 Yy = .15
X = 2.000 Yy = .9231 x = 4.00v0 S P RT-
Rk ERRERERERR KR kS Xk
PSSV ESFEBE RS XISV SESESESBUABREREREUERS EEERBEERENS N -
X = .Uuy 1 = Z.ubU
X = ~2.000 Y = -.9buz K= oo YT
X = =1.500 Y = =.9307 SLP = 10 - . N .
= - x = 1.50v T = LY
A= =1.000 t = -.8162 - . N o
- _ X = <. Qut 1 = 222
x = -.500 Y = —.5195 - - X
- _ F O Z2.500 1 = -12v
y = -000 Y = -0000 _ N
- _ X = 3.000 = 07
x = -500 Yy = -519% - -
_ = 3.500 Yy = .Vlo
x = 1.000 y = .8162 X = 4.000 v - 031
Y = 1.500 Y = -9387 ° -
1 = 2.000 Y = Y. kR kR kR ERERER KRR KRRk
X = -0uv Y = z.ouv
SR EPSEFEER SIS OIS IV SV FEBEAEEFEERUINSIRSESDEREERES x = _500 ! = ]-bb‘
X = 1.000 1= 1.000
X = -2.000 Yy = —.945p N =1 X = 1.500 1 = 330
X = —-1.500 Y = -.9279 SLP = 20 X o= Z.000 1 = <1lo
T = -1.00v Y = -.9y04b X = 2.50¢ 1 = -U5vu
X = -.500 Yy = -—-.63u5 x = 3.000 Yy = .0cu
= <000 y = 0000 Yy = 3.5vu 1 = VR )
¥ = .500 Yy = .6345 I = 4,000 y = U0t
o= 1.000 Y =, .90u48
kEREETRER
y = 1.500 v = J9779 tttttttt#**t*tttt##tt#*t##tt#t***tf*tttt *
I = 2.000 ¥ = .9950 o= -buy yo= o s.uuL
A= .500 1 = Z.067
PRI BIFSIESEBSFE RS RS USSR EREE P IFFISRSU SR SRS EET S b3 = 1.00Y Y = 1.000
) ) ) . Yy = 1.500 Yy = .27
Figure 8: S-Shaped Function with a Positive Slope and A= 2.uuv Y = IR
Normal at (0,0) o= g.buu Y o= -ultb
Y =((2*)/(1 + EXP({{-LOGN(SLP)) (X))))}N oo aleeu DA
Fixed N; SLP is varied x = u.cue Yy = JUb
kkkkkokkkkk Rk kk ek p kR kb kb kkkkk kR p kb kR RkkEkkE
X = .0uv Y T w.uvu
. X = .5¢u Y= >.30b
where, Y = Dependent variable Y = 1.0vU r = 1.0V
_ : X = 1.500 vy = -cu?
X = Independent variable y = 2.000 N Y
N = The value of Y when X=0 o= z.500 vos -0 3a
x = 3.0uv r = 016
SLP = Slope parameter when N is fixed X = 3.500 r = -VuY
X = 4.u00 = -u05
ac e o ofe o e K ke ok ok




1 = =2.000 Yy = -Y802 H =1
I = -1.500 T = .9387 SLP = 10
X = -=-1.00v Yy = .B1b2

1 = -500 Yy = .5145

X = .00v y = -0000

A= .500 Y = -.5195

£ = 1.000 Y = -.ploZ

X = 1.500 Y = -.9387

X = 2.000 Y = -=.9802

SEFESBESFE RS ESTALSFI XS FFJIUAFSURERERFEASEERXSFEXEEERES

£ = -2.uu0 Yy = 1.96v N = 2
X = =1.500 Yy = 1.871 SLP =10
X = =-1.000 Yy = 1.030
X = . 500 Y = 1.03y
X = . 000 Y = -0uo
) S -500 Y = -=1.04y
1 = 1.000 1 = =-1.63b
X = 1.500 Y = -=1.871
x = 2.000 Yy = -=1.9b60

FSEFEFFABFSIEFERSSS TSI RIS FERUZTZRNABEREEEE R SER B X XS

X = -2.000 y = 3.921 N = 4
X = =1.50vu Y = 3.755 SLP = WU
X = -1.000 Yy = 3.273

X = <500 Yy = .08

X = -U000 y = .000

A = -500 Y = =2.0%¢

X = 1.000 Y = -3.273

x = 1.500 Y = -3.75%

X = 2.000 Yy =  =3.921

Figure 10: S-Shaped Function with a Negative Slope and
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Y = ((2*N)/(1 + EXP ((-LOGN(SLP))(X)))+N
Fixed SLP; N is varied

A negatively sloping S-shaped function can be represented
as follows when the normal condition occurs at X=0, Y=0:

Y={(2*N)/(1+EXP((-LOGN(SLP))(X))))+N

where, Y = Dependent variable
X = Independent variable
N = Upper and lower extreme values

SLP = Slope parameter when N is fixed
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X = -2.u0v Y = -923 N =1
X = -1.500 Yy = .35 SLE = 8
1 = =1.000 Y = .6b07
X = .500 Y = .3820
r = -000 Yy = .0000
1 = -500 Y = -—.3820
X = 1.000 { = —.6667
I = 1.500 Y = -.p358
) 2.000 Y = -.9231
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X = -2.000 f = 9602 K =1
I = -1.500 Y = <4387 SLP = W
X = =-1.000 Yy = .81b2

X = -500 Y = -5195

X = -00v ¥ = .0000

X = -500 I = -.5195

X = 1.000 Y = -.8182

X = 1.500 ¥ = -.9387

X = 2.000 Y = -.9802
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X = =2.000 Y = 9950 N =1
X = -=-1.500 Y = -9779 SLP = 20
X = -1.000 Y = .90u8

X = -500 Yy = .6345 -

1 = .000 Y = 0000

X = .500 Y = -.63u4>

X = 1.000 ¥ = =.90u4y

X = 1.500 Y = -.9779

1 = 2.000 Y = -.99%

Figure 11: S-Shaped Function with a Negative Slope and
Normal at (0,0)
Y = {(2*N)/(1 + EXP ((-LOGN(SLP))(X))+N
Fixed N; SLP is varied

The behaviour of this function for a fixed N and for different
values of SLP is shown in figure 10. That for fixed SLP and
for various values of N is shown in Figure 11. The function
can be neutralized when SLP is made equal to zero.

6. CONCLUSION

The range of functions discussed in this paperisnot exhaustive,
although they will be useful for representing most non-linear
processes. The formulae proposed for these functions were
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selected for their simplicity and the ease with which the
extreme values and slopes of the functions could be changed.
These functions are of special interest when hardware and
software facilities are limited. They improve the behaviour
of a model by eliminating discontinuities and make para-
meter sensitivity analysis easier. It is, however, difficult to
relate the mathematical form and the graphical shape of a
function, unless the user is familiar with mathematics.

When DYNAMO is available, it should be possible to construct
user-defined macros for these functions that incorporate
nemonics for their shape. A program containing such macros
is placed in Appendix. This program can be appended before
any model, and nondlinear functions constructed by it can
be called in the model when needed. The DYNAMO supplied
TABLE functions are, however, superior in terms of their
transparency and ease of control or their shape.
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APPENDIX

NOTE MACROS FOR CONTINUOUS NON-LINEAR
FUNCTIONS

NOTE

NOTE KHALID SAEED, ARIF A IRDAMIDRIS, AIT,
APRIL 1983

NOTE

NOTE ***CONCAVE WITH POSITIVE SLOPE CNCVP,
NORMAL AT (1,1) MACRO CNCVP (X, N, SLP)

A CNCVP.K=N+1-N) (X K**SLP)

MEND

NOTE ***CONCAVE WITH NEGATIVE SLOPE CNCVN,
NORMAL AT (1,1) MACRO CNCVN (X,N)

A CNCVN.K=N*EXP((-LOGN(N)) (X.R))

MEND

NOTE ***CONVEX WITH POSITIVE SLOPE CNVXP,
NORMAL AT (1,1) MACRO CNVXP (X, N, SLP)

A CNVXP.K=N+(1-N) (X R**SLP)

MEND

NOTE ***CONVEX WITH NEGATIVE SLOPE CNVXN,
EXTREMES AT (O,N), AND (1,0) MACRO CNVXN

(X, N, SLP)

A CNVXN K=NN) (X.R**(LOGN (SLP)))

MEND

NOTE ***S.SHAPED WITH POSITIVE SLOPE SP11,
NORMAL AT (1,1) MACRO SP11 (X, N, SLP)

A SP11.K=N/(1 {N-1) (SLP) (EXP(-LOGN(SLP) (X.R))))
MEND

NOTE ***S.SHAPED WITH POSITIVE SLOPE SPOO,
NORMAL AT (0,0) MACRO SPOO (X, N, SLP)

A SPOO.K=((2*N)/(1+EXP((-LOGN (SLP)) (X.R))))-N
MEND

NOTE ***S.SHAPED WITH NEGATIVE SLOPE SN11,
NORMAL AT (1,1) MACRO SN11 (X, N, SLP)

A SNILK=(N/(N-1)/(X.K**SLP)#(1/(N-1)))

MEND

NOTE ***S.SHAPED WITH NEGATIVE SLOPE SNOO,
NORMAL AT (0,0) MACRO SNOO (X, N, SLP)

A SNOO.K=-(2*N)/(1+EXP((-LOGN (SLP)) (X.R))))+N
MEND
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