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Abstract

System dynamics models can be heuristically optimized but the process of
optimization usually implies that an objective function has already been

selected.

This paper demonstrates the use of a new tool, called SDRDYN, which
allows a model builder to experiment with various objective functions from a
time-sharing terminal. A solved application example with artificial decision
parameters indicated that both a control approach and an economic approach

were needed for the best objective function of those attempted.

1. Introduction

System dynamics has until recently been a simulation based approach.
Nelson and Krisbergh (5) and Krallmann(&) have demonstrated, however, that
system dynamics models can be heuristically optimized when a razor search

algorithm is attached to the simulation language Dynamo.

The search decision rule (SDR) pattern search algorithm is older and less
effective than the razor algorithm, but it is generally available and very
well documented(l). In the Helsinki School of Economics a modification has
now been developed that combines SDR with Dynamo (3). This new version is
called SDRDYN and it has been specially designed for multi-objective decision

making purposes. The flow-chart of Fig. 1 shows how SDRDYN works.

A model builder defines up to three potential objective functions and
then selects one function from this set for either maximizing or minimizing.
The SDR-algorithm is able to treat any equation of the Dynamo-model, either
of cumulative or non-cumulative type, as an objective function. Any Dynamo-
parameters can be defined as SDR-variables, which means that those parameter
values are automatically changed accoridng to a criterium, defined in the

selected objective function. When these 'hybrid' parameter-variables are given
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their upper and lower bounds the model builder specifies certain run-details

and indicates what kind of information he wishes to get. A flow chart for the

operation of SDR DYNAMO is given in Fig. 1.

Notes (a) - (h) describe its operation in more detail.

(a)

(b)

(c)

(d)

(e)

(£)

(g)

(h)

in the model testing phase he may need information that helps

calibrate the search-routine. This information is given in the
SDR-table.

development histories of parameter values will be obtained if
so desired.

the real run-length of simulation is independent of the run-
length specified in the model.

the number of iterations must be specified before the run.

After having obtained final results the model builder can

obtain any number of new iterations and he can thus continue

from where he left off.

the step-size multiplier is a part of the SDR-algorithm and

defines the magnitude of individual parameter changes.

'"Number of iteration rows' refers to listed rows counted from
the end. When '2' is given to the computer, for example,
information will be' produced from the two last iterations.
Because of the structure of the algorithm the number of output

rows is usually somewhat larger than asked for.

results of the optimizing process are summarized in the 'final
solution', which gives the final parameter values as well as the
initial and final value of the objective function. Now the
model experimenter has three choices: he can remain in the
optimizing mode either by obtaining more iterations or by
changing the objective function or he can move to the simulation

mode of conventional Dynamo.

It is possible to let Dynamo run the 'optimized' model and/or

change parameters by giving the usual 'rerun'-command. An 'SDR'-
command will change the control back to the SDR-mode again.

Fig. 2 demonstrates the use of SDRDYN from a technical point of view.
A sample problem will then be solved to show how this new tool

could be used for model building purposes.
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Fig. 1. Outline of how SDRDYN works
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2. The Model

A well known inventory case study from Jarmain's "Problems in Industrial
Dynamics" was selected, where a retailer had to define an ordering rule. (2)
The original case developed four policy alternatives which will all be combined

now into the following equation:

RO.KL=ARS.K+A1* (B1*RIDC+B2*RID.K-RI.K)/TAT+
A2* (C1*DRO+C2*DDR.K)*ARS.K-FOB.K)/TAPL , where
RO= retail orders
ARS= average retail sales
RIDC= retail inventory desired (if a constant)
RID= . 2 i (if a variable)
DRO= delay in receiving orders
DDR= delivery delay recognized
FOB= factory order backlog
TAI, TAPL= parameters

Retail ordering was based on known future demand. Average retail sales
(ARS) was needed in the ordering rule (RO) to decouple two rate-variables from

each other.

Parameters Al, A2, Bl, Cl and C2 might be called decision parameters, and

have been added to identify various policy alternatives. They are artificial
constructs that allow the optimizing process to select both used information
sources and their weights. Figure 3 below defines cases (a),...,(d), treated

in Jarmain's book in terms of fixed decision parameter values:

caswes
(a) (b) (c) (d)
Al 0 ! 1
A2 0 0 1 1
Bl 1 0 0
B2 0 0 1 1
Cl 1 1 1 0
0 0 0 1

€2
Fig. 3. Decision parameter values for some ordering policies




In the work under discussion all decision parameters were SDR-variables
having upper and lower bounds of 1 and O. Ordinary parameters were given
their published values although they might also be included in the search

process as long as the pre-defined limit of 20 parameters is not exceeded.

Hypothetical quadratic cost functions were added to the model in order
to test the significance of cost assumptions for the study. Total cost was

assume to be an additive combination of the following cost components:
2

(a) 300%( FP)
2

(b) 3*%( RI)

(c) O.OS*(WAS*ARS-RI)2 » Where

FP= factory production

RI= retail inventory

WAS= a parameter (weeks of average sales)

ARS= average retail sales

Three independent and two derived objective functions were formulated in

order to judge the usefulness of SDRDYN for multi-objective decision making:

(1) CFPCO = cumulative factory production change cost
(2) CRICH = cumulative retail inventory change cost
(3) CRICO = cumulative retail inventory cost

(4) 0BJ2 = CFPCO + CRICH

(5) OBJF = CFPCO + CRICH + CRICO

Objective functions (1) and (2) try to minimize squared deviations during
a solution interval. Therefore, they are based on control approach. Objective
function (3) tries to minimize target inventory related costs and is thus based
on an economic approach. Both OBJ2 and OBJF are derived functions as they

combine objective functions (1), (2), and (3).

3. Results

The model was solved for each objective function alternative using a step
input and 150 iterations of a simulation length of 50 periods. The decision

parameters had initial values of case (b) from Fig. 3.



The optimization strategies discovered in terms of decision parameter

values were as follows:

Decision parameters and their values

Used objective

function Al A2 Bl B2 Cl €2
CFPCO 0 0.34 .88 0 0.38 0
CRICH 0 1.0 1.0 0] 1.0 0.01
CRICO 0.99 1.0 1.6 QL2 1.0 0.08
OBJ2 Ok 050 1.0 0.47 0.74 (¢}
OBJF 0.05 1.0 1.0 0.5 1.0 0
Fig. 4 'Optimum' decision parameter values

Figure 4 provokes some comments:

(a)

(b)

(c)

(d)

Only the objective functions OBJF and CRICO include an inventory
term. For this reason other model variations have Al-O0. As
CRICO is only part of OBJF the weighting of inventory information

in OBJF was of minor importance (A1=0.05).

parameter A2 measures importance of feedback information from
order backlog. Only production rate-change based rule CFPCO
does not utilize inventory information directly and this can be

seen from the relatively low value of A2 (=0.354).

C2 was a destabilizing parameter as it brought a pésitive feedback
loop to the model. In all examined cases this parameter had a

very small value.

all parameter values were obtained after a heuristic search process
of a fixed length. Therefore, the final values are not to be judged

as accurate.

Figure 5 summarizes total costs incurred, their ranking in magnitude
The costs have been given

.230+04 = .230%10"

(in left-hand corners), and total rankings.
in exponential form to save space. For instance,
= 2300 money units (m.u.). The rows indicate the objective function
that has been used for optimization purposes. The columns list all
potential objective functions of the study. A small example will
clarify the figure: When OBJF was given as the objective function
to be minimized, the total costs incurred were 45900 m.u. This, of

course,was the lowest value received for OBJF. When the model was
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optimized for CRICH, OBJF had a value of 56700. This was the second lowest
OBJF-value obtained and, therefore, the corresponding small box has a ranking

number of '2'. Total rankings were obtained by adding rankings within each row.

Objective T
function ota}
CFPCO CRICH CRICO 0BJ2 OBJF ranking
used for
optimization
1 5 5 4 5
CFPCO 230404 2.542+05 .591+06 *.565+05 °.647406 20
CRICH 3216005 1.3ugees  2.316408 '? 258405 2 seva0s 11
CRICO J21706 .ueoe0s  Loievos 39506 | tedos 18
0BJ2 2903046 *o1306  Yrosos Lineees iieee. 13
OBJF “295¢05 “asiees  2.118e05 2.341e08 L.4%Becs i

Fig. 5. Objective function costs & rankings

Total rankings indicate that objective functions CFPCO and CRICO cannot
be recommended for the problem under study. Retail inventory time series in
Fig. 6 confirm this preliminary finding and also provide a guide for selecting

the best one from the remaining objective function candidates.
Retail invenlory
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Fig. 6. Retail inventory time series for various objective function
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CFPCO was the last in the total ranking and it unquestionably also led
to the most unsatisfactory behaviour. CRICO was the second from the bottom
of the ranking list and besides this caused self-generated fluctuations in
the system. OBJ2 is unsatisfactory as it implies inventory shortages in the
future. From those still left the total objective function OBJF is better
than CRICH because retail inventory should respond in a proper way to a step
increase in incoming orders. At least this simple example demonstrated that
an optimization process should thus be based both on a control and an economic
approach. The final value of OBJF (.459+05) was only 18.7Z of the value of
OBJF in the best simulation run (case c) when original parameter values were
used. This means that the heuristic procedure used gave a solution that
produced considerably smaller costs than the best of the conventional system
dynamics type solutions in Jarmain's book. In this specific situation the

conclusion was based on assumed hypothetical cost functions.

Let us return to Fig. 6 again. Most of the time-series proved to be
unsatisfactory as they led to insufficient amounts of inventory. The control-
approach based objective function CFPCO, for example, even led to negative
inventory values. In a situation like this it might be suggested that a
terminal inventory constraint would remove the problem symptoms. However,
because CFPCO does not include an inventory term, a terminal inventory
constraint will not help either. When the target inventory was given a value
of 450 units in period 48, the time series of CFPCO and OBJ2 remained
unchénged. The objective function CRICH was based on inventory change cost
and, therefore, retail inventory reacted to some extent to the given terminal
constraint. A new time-series, marked CRICH, shows how CRICH was changed.
These experiments indicate clearly that a terminal constraint is not able to

compensate for mistakes in objective function selection.

It is also interesting to note that the best objective function OBJF
produced inventory time-series data that are even 'sounder' than those found
in the reference (2). In that solution inventory approached its final value
after fluctuations, but in the optimizing run, based on OBJF, it approached

gradually after the initial depletion phase.
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4. Discussion

The approach outlined above leads to many questions. To get this
rethinking process started and to stimulate it further some differences from

the old way of doing things will be selected for a closer examination.

In the model building phase, defining and selecting bybrid parameters
is going to be an important step in the future. The work under discussion
indicated one approach that was based on artificially created decision parameters.
There might be many other ways of linking a Dynamo-model to a higher order
optimizing algorithm, however. This subject is likely to be a fruitful area
for future research. The optimizing process has been made completely automatic
in SDRDYN and, therefore, no extra programming work in addition to the

ordinary simulation model is needed.

The full power of SDRDYN shows up in a multi-objective decision-making
situation, and this implies an interactive framework through a time-sharing
terminal., At least in a multi-objective situation a new mode of co-operation
is possible and perhaps even necessary between management scientist and manager.
The manager has now to take an active part in the model exploration phase
through an SDR search process because he, after all, is the real decision maker
and the only one who can judge and weight variables that are not strictly
comparable. The important job of model exploration requires as such no
programming or programming knowledge at all. The manager needs only to be
able to read Dynamo-programs at most in order to make sure that he agrees with

the model.

When the decision maker has accepted the model, new policy design will be
a process of co-operation: The designer adds new alternatives when necessary and

the decision maker explores the model, either alone or with the designer.

Besides control engineering type test series, historical time-series from
real life are useful if available. By this means model-produced cost or pfofit
figures can be compared with historical data available and an extra source for

model validation secured.

_12-



The current study leads to a tentative conclusion that the chosen
objective function should include both control variables and economic
variables. To choose the exact form of this function and the parameter

values used is just the important job a manager is needed for.
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