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Abstract

In order to enable optimization of system dynamics models three hierarchies are
proposed: I. Model, II. Optimizing procedures, III. (artificial) Intelligence. Using
these levels two iterations are proposed. The optimization procedure of level II leads
to a "small" iteration. When this has ended a transition is made via level III to other
optimization procedures - '"grand iteration'. This hierarchial approach leads to a
division of labour in system dynamics, as model structuring can now be made an automatic

process.
Introduction

When Industrial Dynamics was invented it focused explicitly on rules underlying
decision making processes. This was a true contribution to the art of Management Science,
as managerial policy making instead of individual decisions could now be explored in
normative environments.

Twenty years have now elapsedifrom those days but in the meantime control engineering
principles of dynamicists have very effectively isolated them in a subculture, impenetrable
to any outsider. The paradigm they have and the means for analysis they use have been
adopted from control engineering, a black-box to a typical manager and to a non-specialist.
One might ask, therefore, whether the price dynamicists have paid for the®r professional
independence was too high or perhaps unnecessary.

System dynamicists have shown considerable willingness to apply their tool to a very
broad range of social phenomena but astonishingly little effort has been given to modify
the tool and paradigm. Potential explanations might vary depending on the inquirer's
own role and biases. A social psychologist might refer to a weak group ego of the dynamicis
a Marxist researcher to the power of the controlling class of control engineers, and a
business economist to the leadership of the founder. My primary explanation is that
outsiders from other scientific groups usually do not know system dynamics thoroughly enough
to be able to change it in a way that commands acceptance or understanding. Insiders may
know but still only recommend control engineering studies in order to convert the outsider
to an insider. The tiny group of volunteers indicates, however, that interscientific

barriers should be removed some other way.
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One might also raise the question, why has an. optimizing approach not been used
more widely because Control Engineering background seems to be so common in this field.

To reply in system dynamics terms I would say that the natural delays in the evolutionary

process of system dynamics itself are quite long. It takes time to recognize that

optimal control theory has developed and offers now new clues, it takes time to draw

the necessary conclusions from this development and finally, it takes both time and

resources to modify the tool.

A fresh and hopefully constructive approach might be to ask if the modelling

process could be simplified. Why not hide, for example, some control engineering

aspects from the user. If this proves to be a successful approach a non-specialist is

able to use system dynamics effectively, releasing professionals to deal with problems
of a higher order. Actually we have for long been ready for that but it requires a new
kind of tool - more general and more versatile than before. Perspectives ahead of us
will be demonstrated below and thid endogeneous growth process has no foreseeable 'end.
As system dynamics in the old-established simulation sense is going to be just one
extremely important part of a bigger whole, perhaps the word Super Dynamics might

describe the new field lying ahead.

The Missing_Link

A model builder without control engineering background probably feels that the

new policy formation phase in system dynamics is difficult, confusing and extremely

time-consuming at the best. Even with the loop—analysis method he is likely to get

into trouble as "there is little in the way of explicit rules to guide one, except
that increasing delay/or reducing gain are the key to improving stability, where that
is a desirable system characteristic.
Suppose for a moment, however, that we have an algorithmic method which automatically
scans through all conceivable model structures and parameter values and then selects

the 'best one' according to some measure. Some optimizing versions of Dynamo-language,

e.g. SDRDYN are already available. SDRDYN has an SDR (Search Decision Rules) -

heuristic algorithm as the main program allowing 'optimization' of a pre-selected set

of model structures and parameter values after a process of iteration”. This approach

as such does not work in real life applications, however, because of the number of

Parameters involved. It means that the model must be subdivided somehow.



To make the idea clearer let us see first what analogies might be drawn from the
Simplex algorithm of Linear Programming, which changes a basis repetitively until an
optimum solution has been found. A basis refers to those variables which have a
non-zero value in the latest solution and therefore, are in an activated state. The

objective function never deteriorates during the iteration process, which has been

proved to be converging in L.P.

We would need an algorithm where each basis defines a model structure - parameter

value combination that is being explored. At the same time there are nonbasic model

sStructure and parameter value variables but they should retain the latest values from

heuristical optimizing process in order to manage the procedure.

A small example will clarify the concepts of basic and non-basic in system dynamics.
Let us suppose that parameters P1,P2 and P3 in the equation below have been definedas

variables for the optimizing SDR-algorithm:

R RATE.KL=P1*AUX1.K+P2*AUX2.K+P3*AUX3.K

If Pl and P2 are in the basis the algorithm will only search various Pl- and P2-
values within some predefined upper and lower bounds, treating P3 as a constant. One
possible basis change might then be to remove P2 from the basis, adding P3 instead.

When Pl and P3 are being searched P2 would retain the latest value it has received.

The Simplex algorithm determines incoming and outgoing variables but an heuristic
algorithm could be bu9lt to do the same. Acﬁually there is even no reason to restrict
the total number of changing variables to two. It can be guaranteed that no worsening
of the attained objective function value will occur as the search algorithm always
stores the best value so far found in a computer memory. In this way we have link

connections to all important search results from the past.

In order to prevent confusion let us call a change-of-basis calculation is

system dynamics as grand iteration. This is a heuristic procedure which, at least in

principle, can make use of all information produced by the system before. Let us call

that part of the model artificial intelligence algorithm as it is computerized and

might have learning abilities.



An artificial intelligence algorithm defines the rules that change the basis.
The incoming variable selection for a basis change operation might utilize an analogy
from line-balancing in production planning. In one heuristic line-balancing algorithm
the total work content will be assigned to various work stations by using random task
selection. This procedure is then repeated several times using biased task selaction
based on earlier successes and failures in this experimentation process.3 ' This kind of
repetitive procedure might be useful also in selecting incoming variables in Super

Dynamics. Figure 1 below compares both approaches:

Line Balancing Super Dynamics Comments
Task Basic wvariable
Order of task selection Set of variables selected Solution to be found
‘Number of work stations Objective function related Criterion used
to time

Fig. 1. Comparison of some concepts in line-balancing and Super Dynamics

The outgoing variable(s) can be determined by examining 'historical' values of all
variables during the iteration process of SDR-algorithm. As the algorithm tries to
work in the order of diminishing returns those variables that are in good control are
candidates for leaving the basis. This is opposite to statistical quality control
philosophy where an out-of-control situation triggers action. Nevertheless, the notion

of control limits might still be applicable.

One might also ask whether removal of variables under control works if the system
variables interact strongly. Without further experimentation and research with
different models nobody can give any definite answers to this question. Let us suppose,
however, that we have a case where the removal idea fails. As the number of outgoing
variables is by no means restricted to one, broadening the selection rule might help.
Perhaps the new rule should treat strongly interacting variables as an aggregate in

addition to the ordinary aspect of relative changes.



The goal of artificial intelligence is to replace human brain. One might
temporarily work the other way round, however, to demonstrate the utility of presented
ideas before commiting any new software changes. Some simple change-of=basis rules will
now be selected and the experimenter executes then these rules from a time-sharing

terminal. This means that he, instead of the artificial intelligence algorithm, provides

all grand iterations.

The changing of a variable might be done at any time, or after some specific number

of iterations. As the second alternative is easier, to follow, I think, we will proceed
that way this time.

The relative change of each basis variable is the change in percentages from the
initial value before the latest search process and should be calculated after a certain
number of iterations. A small relative change indicates that a variable either is of
secondary importance to the optimization process or already has a value close to 'optimum’.

This makes it an outgoing variable candidate.

Both the objective function value and relative changes are important for grant
iterations. The time for next grand iteration has arrived when the objective function
value is becoming stabilized. An estimation error in this respect might effect both the
final solution from the whole process as well as computation costs. The outgoing variable

related decision is based on relative changes and only this aspect matters as the objective

function value is now already given.

If the algorithm really chooses a variable it then moves to the group of non-basis
variables, i.e., parameters. The simplest way of choosing incoming variables is to do it

randomly but there are no technical limits - only economical ones - for sophistication.

For example, one might estimate the change in the objective function that results
from changing each non-basic parameter by 1Z. If there are n non-basic parameters,
this requires n runs of the model. For small changes in the parameters, the change in
the objective function is linear. The problem is now to pick the most promising
candidates to enter the basis. The criterion is simply the maximum improvement to be

expected in the objective function, assuming that linearity still holds over a wider range

of parameter values.
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In an example of an application that follows, the relative changes were calculatead
by a pocket calculator and two basis variables with the smallest relative changes were
removed from the basis. The incoming variables were selected randomly by using random
number tables.5 The same procedure was then repeated again from the very beginning but
this time removing those variables which promise most improvement to the objective

function value.

An Example of an Application

Coyle demonstrates in his 'Management System Dynamics'" how system behaviour can be

improved by the loop-analysis methodé. He explains the application as follows:-

"A company has two departments. Distribution hold a stock with which to meet sales,
and replenish the stock by placing orders on Manufacturing. Manufacturing adjust
their production against the backlog of unfilled orders, delivering the finished
goods to Distribution's stock, after a delay. For gimplicity in this example,
distribution are allowed to have negative stocks and Manufacturing regard the

backlog as depleted when the work has started."

Fig. 2 below shows. the influence diagram of the basic system that needs correcting.
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Fig. 2. Influence Diagram of the Basic System

Reproduced from Coyle, p. 206.
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Coyle makes changes in the model in several phases, and in this way gradually
improves model behaviour. Let us now suppose that a non-specialist would try to do the

same. He would first make a list of all conceivable changes. To give a specific example:
Factory order rate (FOR) was defined in the basic system as follows:-

FOR.KL=ASR.K+(DINV.K-INV.K)/TAI

The non-specialist might now reason that FOR could be a function of order pipeline

instead of inventory or a function of both. The equation for FOR will thus be changed:

FOR.KL=ASR.K+Al*(DINV.K-INV.K) /TAI+A2* (PLD.K-PLA.K) /TAPL, where

PLD = pipeline desired
PLA = pipeline actual
TAPL = time to average pipeline

We have now two new parameters, Al and A2. When Al = 1 and A2 = O the equation is
simplified to the original one. On the other hand, if Al = 0 and A2 = 1 the model
structure has changed from what it was. In both cases we have an ordering policy that is
pure as it relies only on one alternative. It might be reasonable, however, to pursue
both choices simultaneously, i.e., to have a mixed policy. This happens when Al O and

A2 0.

Let us suppose now that our non-specialist selected exactly the same model changes
as Coyle did in his pedagogical example, just to get a yardstick for later comparison.
In this way we have a set of potential model structures and parameters without having

any idea how to select the right combination out of this mess.
The list below shows those model equations that have changed:—

FOR.KL=ASR.K+Al*(DINV.K-INV.K)/TAI+A2* (PLD.K-PLA.K)/TAPL
RBL.K=A3*TABHL (TRBL,AOR.K,50,150,25)+ (1~A3) *TABHL (TRBL,APL.K,
50,150,25)

IPL.K=A4* (0OBL.K-RBL.K) /TABL+A5*AOR.K+A6*APL.K
PLD.K=(A7*ASR.K+(1-A7)*AOR.K) (A8*WPLD+ (1-A8) *DDR.K), where

N
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FOR = factory order rate
ASR = average sales rate
DINV = desired inventory

INV = inventory

TAI = time to adjust inventory
PLD = goods desired in production pipeline
PLA = goods in production pipeline

TAPL = time to adjust pipeline
RBL = required level of backlog

TRBL = table of required backlog

AOR = average order rate at factory

APL = actual production level

IPL = 1indicated production level for backlog control

OBL = actual order backlog
WPLD weeks pipeline desired
DDR delivery delay recognized by distribution

1]

The model has now 8 new parameters (Al,...,A8) and each of them might be

selected as a variable for the SDR-algorithm. Let us call them decision parameters

in order to distinguish them from usual system dynamics parameters. A value of zero

for a decision parameter would cut off an information flow and change the structure of
the model. The model also has many ordinary parameters, like TAI,TAPL, etc. Most of
them are controllable, as management can change their values within some limits without
making anf physical changes in the real world system. Productionfdelay, PDEL, 1is

fixed, however, for modelling purposes, as a production process must be assumed as given

in the short run. Ordinary parameters are, therefore, either controllable or fixed.

Let us suppose now that the following 9 parameters are controllable and will be

selected for a closer examination. The allowable range for all of them is assumed to be

from one to 15 weeks.

TASR = time to average sales rate

TAI = time to adjust inventory

TAPL = time to adjust pipeline

TAOR = time to average order rate

TABL =  time to adjust backlog

PAT = time to adjust to planned production level
TAP = production averaging time

TSDD = time to smooth delivery delay

WPLD = weeks pipeline desired
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We have now selected 17 parameters, of which 8 are decision parameters. This
model is so small that all parameters can be given to the search process at the same

time. Let us call this alternative simultaneous approach. The other alternative,

especially proposed in this paper, is to give only some but not all alternatives at

the same time to the search algorithm. This strategy will now be named sequential

approach. In the area of plant layout heuristics there is a similar kind of division.
A construction procedure starts with an empty layout and gradually assigns departments
to locations until the layout is complete. An improvement procedure starts with a

complete layout and attempts to improve on it by changing the locations of departments.

The number of variables in the basis and the number of leaving or entering variables
are both decisions that should be made. Let us decide, for the sake of illustration, that
the basis size is going to be 7 variables and that 2 variables will be changed in each

grand iteration.

The initial basis was build randomly, all 17 variables thus héving exactly the
same chances of being selected. As to the initial values for all parameters, they were

selected in such a way that the model equaled Coyle's basic system.

Relative changes of the basic variables were calculated (using a pocket calculator)
after 30 iteration rounds. Two variables with smallest relative changes were removed
from the basis and two others were added randomly. This was the fist grand iteration.
After another 30 iterations the same procedure was repeated again but without accepting
any variables that had left the basis earlier. In 6 grand iterations all model variables
had already been tried and with the results shown in Figure 3. When a variable leaves
the basis it will retain the latest value it had. For example, A7 changed only from
1 to 0.88 in the first grand iteration. The relative change was not more than 127 and A7
was removed. After the first grand iteration the line of A7 in Fig. 3 is empty as

A7 is now a parameter with a value of 0.88.

Quadratic cost components were added to the model for purposes of defining the
objective function. The form of the objective function was taken as that which gave the
best results in an earlier study.7 It consisted of weighted terms of production rate
variations, inventory variations, and inventory errors from a target value, all summed

Over a reasonably long period of time.
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Any variable changes were permitted when all variables had already been tried in
a basis., Figure 4 shows the speed of convergence towards an 'optimum' that was found

earlier by using the simultanecus approach and 150 iteratioms.

Grand 1
Iteration 9 1 2 3 4 3 8

Above
'"Optimum’ 5749. 29.00 12.54 10.81 9.33 4.42 1.28

in p.c.

Grand
Iteration

Above
'"Optimum’ 1.25 0.61 0.14
in p.c.

+

the starting condition

Figure 4. Convergence of Solution

The sequential approach and the simultaneous approach both gave similar time
series and they look very satisfactory. As Figure 5 demonstrates, recovery from a
step input was fast in the sequential approach. To find any significant differences
we have to go deeper into detail and have to focus on individual parameter values in

both cases.
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Figure 5. Some time-series from sequential approach after.

9 grand iterations

Fig. 6 suamarized the most crucial parameter variations between both approaches.
Comparison with the equations of FOR and PLD given before shows that the sequential
approach controlled delivery delay, the simultaneous approach controlled pipeline effects
and inventory discrepancy. It looks as if we have here a case vhere highly different
policies were of equal value. This is encouraging, as a hill-climbing alzorithm can

never guarantee that the lowest one of multiple minima has been found.



Final parameter Sequential Simultaneous
value approach approach
Al .07 1.00
A2 0 .72
Fig. 6. Major policy differences between sequential and simultaneous approaches

Let us now see what happened when perturbation of parameters was tried in order

. . ’ ; . +
to find out the incoming basis variables. Each parameter was changed at a time by = 1%

when predetermined boundaries allowed it. When the lower limit of a parameter was

zero and the parameter had that value, the change of 17 from the upper limit was made.

An index value was calculated for each parameter in the following way:

Pp : = P.
Ij = Ao, B, 1l | where

: Apj’

E. index value

J

Ao, = improvement in the objective function value, when the value of parameter j

J was changed

Pp . = boundary value of parameter j in the direction which improves the objective
»J function value

P; = change in the value of parameter j

Two parameters with highest index values were then selected as incoming basis
variables. Figure 7 summarized the results received. The completed grand iteration
number one from Figure 3 was selected as the starting point. Numerical values in
parentheses refer to the values of incoming (+) and outgoing (-) basis variables. The

values of the "Objective Function Change" column indicate the cost effect of each

parameter change tried.
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Figure 7 clearly shows an unexpected development in the optimizing process,

i.e. very rapid initial improvement leads to a less recommended local optimum. In this
specific case it was better to proceed at a lower speed by selecting some parameters of
minor importance to the basis. The more efficient approach, on the other hand, moved
towards a solution which never allowed experimentation with many variables. There is

a limit to the use of simultaneous approach, related to model size, model structure and
to the stste of the art in electronic data processing. This means that we cannot always
use a simultaneocus approach. Even when it is possible to do so, computational efficiency

should be examined in both frameworks.

The results of a search procedure depend on the initial values of the basis variables.
Experimentation with them is likely to lead to a good enough solution, but at the expense
of significantly increased computation time. More generally speaking, we should notice
that either the perturbation approach or the sequential approach might initially fail,
Construction of artificial intelligence algorithms might therefore utilize a combination

of the concepts of random selection, parameter perturbation and initial value perturbation.

Final Remarks

In the experiment reported the search process was quided by the assumed cost function.
It had three additive terms, which should be balanced somehow to give enough weight to all
components of the cost function. Cost function parameters cannot be judged in complete
isolation from the model structure and policies, however, as these have repercussions on

real cost balance achieved during a simulation run.

A highly simplistic step input was tried in the model. In a real world more
complicated driving functions and noise might be expected. As both these examples show,
much more research work will be needed. Especially artificial intelligence algorithms

hopefully will be taken as a challenge by S.D. specialized control engineers.

This paper has shown that by dividing the variables into basic and non-basic ones
the sequential approach is extendable to problems of practical size. This immediately

brings up the question of the real significance of the idea.

o] =



The starting point was the notion that use and understanding of System Dynamics has
required undesirable expertise. Every effort to reduce this is highly welcome, as the
age of Industrial Democracy is going to bring new groups into the decision-making process.
At that time survival of individual management tools might depend on the understanding

required by a user. Now we know that this challenge can be met.

The flexibility of the techmique opens up, however, new vistas in other directions
also. Until now Systems Theory has not been successful in providing models which could
structurally change when time passes. This handicap has led to the use of scenarios in
models that reach far out into the future. The experience so far available indicates,
however, that optimizing models end up with mixed policies that are very suitable for
continuous changes. Therefore, model structuring can be an automated and continuous
process in system dynamics. In practical terms, this process would be directed together

by the artificial intelligence algorithm and the objective function of a model.

The objective function is that part of the model that really guides the evolutionary
process produced by the model. At a higher abstraction level, we might say that any
objective function corresponds to policy making by rate equations in ordinary system
dynamics terms. In practical terms, optimization required that some parameters were
treated as variables. In the same way, policy making by an objective function is more

general than policy making in system dynamics. The objective function itself is likely

to change as time passes. Again technically speaking, this .is no problem. In SDYDYN,

for example, any model equaticn can be accepted as the objective function. Therefore,

it is possible to let the future shape an evolutionary process of the objective function.
System Dynamics has already given promises as a tool for futurologistss, but the prospects

look even brighter.

Discussion has so far been confined to a single-objective case, although multi-
objective decision making is likely to be increasingly in focus in the years to come.
This is an area where the sequential approach might prove to be very valuable, as the
system and the objective functionlare not independent of each other, but interrelated,
Instead of having only a set of potential basis variables for selection purposes, as so
far implied, we would have a set of objective function elements, too. A decision maker
might then repetitively change the objective function by using information on model
structure and model behaviour. This level of sophistication leads to interactive
modelling from a terminal, but it implies that all previous phases of conceptual developme:

have already been implemented by making them fully automatic.
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