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Abstract

This paper illustrates the use of two methods devised by Ziegler and Nichols
to design feedback controls for System Dynamics models. The methods were
originally devised through experiments with hardware systems. For this

reason, they give good basic designs with very little effort.

Introduction

In 1942 Ziegler and Nichols published two methods for the design of control
rules for two commonly occurring, but different, types of system. Their
methods had been devised through extensive experimenting with a variety of
hardware systems. The underlying purpose of their work is best illustrated

by their own description (Ziegler and Nichols, 1942)

"A purely mathematical approach to the study of automatic control is certainly
the most desirable from the point of view of accuracy and brevity.
Unfortunately, however, the mathematics of control involves such a bewilder—
ing assortment of exponential and trignometrical functions that the average
engineer cannot afford the time to plough through them to a solution of his

current problem.
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"The paper will thus first endeavour to answer the question, 'How can the
proper controller adjustments be quickly determined on any control appli-
cation?'"

The Ziegler Nichecls (ZN) methods lead to one, two and three term

controllers (i.e. Proportional + Integral + Derivative), a type still
favoured for a wide range of hardware control applications. Though they
result in linear controls, they were proven on actual systems that exhibited
various nonlinear effects. They are thus well suited to System Dynamics
applications, both because of their ability to cope with mild nonlinearities
and because of their close connexion with classical control theory, which was
the theoretical foundation of System Dynamics. In practice, because they

are easy to learn and apply, they provide a systematic approach to policy
design midway between often time consuming ad hoc experimentation and the
difficult to acquire sophistication of rigorous classical methods such as Bode
and Nichols (Thillainathan, 1978).

The Basis of Controller Design

CONTROL Aoutssils SYSTEM
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FIGURE 1.

The ZN methods apply to single feedback loop controllers of the type shown

in figure 1. The controlled system is basically divided into two components,
the system or Open Loop transfer function and the controller. This

division is of course basic to classical feedback control design (c.f.
Eveleigh, 1972). The system transfer function represents in System Dynamics
terms 1) Filters to be discussed later, 2) the behavioural equations of

the system, i.e. the equations describing those parts of system behaviour
that for the design being carried out are considered fixed. DELAY's are
perhaps the most important single component of most transfer functions,
though a complex system will of course contain many other types of behaviocural
equation. In applying the methods, the general form of the System Transfer
Function is important because it is on the basis of this form that the choice

as to which of their two methods to employ is made.
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Though both methods are suitable for the direct design only of single feed-
back loops or single input, single output controllers, it should be noticed
that the System Transfer function will always contain a number (some implicit)
of feedback loops. This in turn means that is is possible to use the
methods sequentially to design one feedback loop, which is then considered
as part of the System Transfer function for the design of the next feedback
loop and so on. This sequential approach to policy design is known to work
well when the feedback loops in the system operate at different speeds. It
has, for example, been very successfully employed by Ratnatunga (1979) in a
model of the consumption sector of an economy, where adjustments to the

mix of goods purchased is rapid when the price of a particular item changes,
whereas the adjustment of total expenditure across all products when income
changes is a much slower process.

The rules given by Ziegler and Nicholls lead to a controller of the form

™

ZK Je(t)+ gﬁamdt + D de (1)
I dt

where e(t) denotes the error at time t. As well as giving rules for determin-
ing appropriate values of ZK, I and D for a full 3 term controller involving
Proportional, Integral and Derivative control, they also give rules for
determining ZK and I alone (proportional + integral control) or ZK alonme
(proportional control). Since proportional, integral and derivative action
contribute to effective control in different ways, all three are often
considered desirable in hardware system design. In many system dynamics
applications, however, only proportional feedback control is used and the
Ziegler Nicholls methods thus offer the prospect of better control than
usually achieved.

Actual Controller Design

In order to make effective use of the Ziegler Nicholls methods, it is usually
useful to extend the notion of the control system of Figure 1 as shown in

Figure 2.
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By filters in this figure, we mean the various averaging devices used in
System Dynamics models such as SMOOTH's or Moving Averages. These serve

two purposes. Firstly, they reflect the fact that control policies must be
based on LEVELS rather than RATES because the latter cannot be measured.
Since averages of RATES are LEVELS the use of filters secures this property.
Secondly, filters need to be used to shape the response of the controlled
RATE to remove high frequency variations from it (Sharp, 1976).

The main change from the point of view of the Ziegler Nichols methods
between Figures 1 and 2 is the splitting of the System Transfer Function into
a Feedback Filter block + a Behavioural Equations block. It is the

form of the behavioural equations block or alternatively the form of the
output variable that determines which of the two methods should be applied.
Furthermore, to apply the method to be described second, it is necessary to
investigate the response of the System Transfer Function shown in Figure 2.
In order to achieve a practical control set of control policies, however,

it is necessary to rearrange and alter the system of Figure 2 as shown in
Figure 3. Two changes will be noticed. Firstly, a feedforward element has
been added to the system, i.e. the direct link between the input and the
controlled variable. Such feedforward elements occur frequently in the
control policies used in System Dynamics models, because of their utility in
improving system performance when subjected to a ramp input (c.f. Sharp, 1976).
Since the feedforward part of the control does not affect the stability and
other behaviour of the feedback controller, the latter can be designed
independently of Zeigler Nichols' methods. In order to implement the
control rules, however, it is necessary to interchange the positions of the
Feedback filter and controller in the system. For linear filters such as
SMOOTH's and control rules of the type given by equation (1) the feedback
elements of the systems of Figures 2 and 3 are equivalent. Equation (1),
however, requires the mweasurement of the rate of change of error, which is
not feasible. By placing the filter before the controller, it is possible

to implement the control using only variables that can be measured.

A Production Planning Example

In order to demonstrate the use of the Zeigler Nichols methods, we consider

a simple production planning system based loosely on a real system as described
by Sharp and Coyle (1976). As will be shown, the choice of method depends on
what we consider the notional input and output variables. We accordingly
define the input sector of the model, the behavioural equations and the output
sector. These are given in Figure 4. The control rules appropriate to each

method are then discussed separately.
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NOTE INPUT SECTOR

R OR.KL=1000+75*SIN(6.283*TIME.K/.1667)+150*SIN(6.283*TIME.K/O.25)
X +100*SIN(6.283*(TIME.K+1.7)/0.5)+125*SIN(6.283*TIME.K/4.5)+N.K
D OR=(UNITS/YR) ORDER RATE

L N.K=N.J+DT* (NORMRN (0, 400)~-N.J) /0.2

N N=0

D N=(UNITS/YR) CORRELATED NOISE IN ORDER RATE

A DST.K=200+K*SMOOTH(OR.KL, S)

D DST=(UNITS) DESIRED STOCK

NOTE OR AND RATE OF CHANGE OF DST ARE NOTIONAL INPUTS FOR FIRST ZN METHOD.
NOTE CUMULATIVE ORDERS AND DST FOR SECOND.

NOTE

NOTE BEHAVIOURAL EQUATIONS

R PCR.KL=DELAY3(PSR.KL,0.25)

D PCR=(UNITS/YR) PRODUCTION COMPLETION FATE

NOTE

NOTE OUTPUT SECTOR

L ST.K=ST.J+DT*(PCR.JK—OR.JK)

D ST=(UNITS) STOCK

N ST=DST

NOTE PCR IS NOTIONAL OUTPUT FOR FIRST METHOD. CUMULATIVE PROTDUCTION FOR SECOND.
NOTE

NOTE CONSTANTS

C K=0.1

C §=0.1

C DT=0.04167

FIGURE 4
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Obviously the system, though ostensibly dealing with production planning, is
more general in form. Thus there is a LEVEL (ST) whose value is to be
controlled to vary in line with some target (DST). A slightly more general
form of a base constant plus a constant times a smoothed value than is usual
has been chosen for DST. The base constant could, however, be set to zero
and the same controls would still apply. Control is affected by controlling
some RATE (PSR) and the system has a behavioural component that is considered
fixed. In this case, and indeed quite commonly, this is a simple DELAY
though more complex forms are easily coped with.

The system is drivem by OR. As is the case in the real system omn which the
example is based, this has strong seasonal components corresponding to
monthly, quarterly and six monthly seasonality. We shall assume that as is
usual in such systems, the seasonal variation shall as far as possible be
absent from PSR. 1In addition to the seasonal components, the Order Rate
contains a business cycle like variation of period 4.5 years, plus

correlated random noise. For a justification of the latter term see
Forrester (1961).

To demonstrate the robustness of the ZN methods and their usefulness in dealing .
with systems with discrete time steps, we choose the unusually large value

for DT of 0.04167 yr corresponding to 2 working weeks.
Designing Control Policies

The choice of which ZN method to use is determined by whether we choose as

our notional output variable a RATE, in which case we use the first ZN' method

or a LEVEL in which case we use the second.

Applying the First Method

For this method, the notional input is OR plus the rate of change of DST and
the notional output Production Completion Rate. In order to design the
controller, it is first necessary to select appropriate filters. For the
feedback filter, because of the strong seasonal components, we make use of a
Moving Average Filter of length 0.5 years (denoted by MOVE(V.K,0.5) where V.K
is the variable being averaged). This eliminates the seasonal components
completely (Sharp, 1978). In addition to permit the use of derivative
control, a second filter is necessary and this will be taken as a SMOOTH

of length 0.1 year. The process by which Feedback error is filtered is

therefore as depicted in Figure 5.
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For this controller a feedforward element is needed for good response to a

ramp input. For the feedforward filter to avoid seasonal effects, we again

use a Moving Average of length 0.5 yr.

The equations for Production Start Rate with the first method are given in

Figure 6.

NOTE CONTROLLER EQUATIONS FOR FIRST METHOD

noO=Z=zZ2ZEZE=Zz000dppUdropUdrUoroprUdreorox

PSR.KL=MAQ.K+ZK1% (MASE.K/I1+CE.K+D1*DC.K)
PSR=(UNITS/YR)

SE.K=DST.K-ST.K

SE=(UNITS) STOCK ERROR

MASE . K=MOVE (SE.K,M)

MASE=(UNITS) MOVING AVERAGE STOCK ERROR
MAD.K=MOVE (DR.KL,M)

MAQ=(UNITS/YR) MOVING AVERAGE ORDER RATE
MAC.K=MOVE (PCR.KL,M)

MAC=(UNITS/YR) MOVING AVERAGE COMPLETION RATE
CE.K=MAO.K-MAC.K

CE=(UNITS/YR) MOVING AVERAGE ERROR IN COMPLETION RATE
DC.K=A*MAQ.K+B*#MAOS.K+C*MAODS.K
TC=(UNIT/YR**2) STOCK ADJUSTMENT TERM
MAO0S.K=SMOOTH (MAO.X,T)

MAQS=(UNITS/YR) SMOOTH OF MAO
MAODS.K=SMOOTH (MAOS.K,S)

MAODS=(UNITS/YR) SMOOTH OF MAOS

M=0.5

M=(YR) LENGTH OF MOVING AVERAGE

T=0.1

E=D*K/S/T

A=D/K+E

F=(K—(S+T)*E)/S

B=1-D/K+F

C=-E-F

ZK1=

I1=

Dl=

FIGURE 6

The constant S in Figure 6 is as defined in Figure 4.

To
(5 39
1)
2)

3)

use the first method, it is now only necessary to obtain the values ZKl,
D1. The procedure is as follows:

Set Il to a very large value, e.g. 109 and D1 = O.

Find value of ZKl for which the system exhibits sustained oscillation
for OR given by a unit STEP. Denote this value by ZKMAX.

Measure period of sustained oscillation (PMAX).
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The determination of the value ZKMAX is most easily carried out online. 1In
This case, three runs of the model using the interactive DEC10 version of
DYSMAP were required to establish the value ZKMAX = 1.8. A plot of the
output for this value of ZK1 is given in Figure 7. The value of PMAX in
this case turns out to be 1.1 years,

Once these two constants have been determined, the appropriate settings for
the constants ZK1, Il and D1 are easily determined from the rules given in
Ziegler and Nichols paper. They are:

Proportional Control

ZK1l = 0.5ZKMAX
I1 =0
Dl =0

Proportional + Integral Control
ZK1 = 0.45ZKMAX

I1 = 0.83PMAX
D1 = 0.
Proportional + Integral + Deriviative Control
ZK1 = 0.6ZKMAX
I1 = 0.5PMAX
D1 = 0.125PMAX

Figure 8 shows the performance of the Proportional + Integral control
obtained from the above formulae (ZK1 = 0.81, I1 = 0.92) and
Proportional + Integral + Derivative Control (ZK1 = 1.1, I1 = 0.55, D1=0.13).
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Applying the Second Method

In this case, the notional input to the system is Cumulative Orders and the
Notional Qutput is Cumulative Completed Production. In this case, derivative
control can be attained with a simpler feedback filter. We therefore choose
a six month moving average filter for both the feedforward and feedback
filters. 1In fact, it is possible with this method to obtain satisfactory
response for a RAMP input in Order Rate without a feedforward element to the
controller. The equations for Production Start Rate with this method are

given in Figure 9.

NOTE CONTROLLER EQUATIONS SECOND METHOD
ERROR.K=DST.K~ST.K

ERROR=(UNITS) STOCK ERROR

MAER. K=MOVE (ERROR. K, M)

MAER=(UNITS) MOVING AVERAGE STOCK ERROR

IMAER. K=IMAER.J+DT*MAER. J

IMAER=0

IMAER=(UNITS*YR) INTEGRAL MOVING AVERAGE STOCK ERROR
SOR.K=SMOOTH(OR.KL,S)

SOR=(UNITS/YR) SMCOTHED ORDER RATE

MSOR.K=MOVE (SOR.K, M)

MSOR=(UNITS/YR) SMOOTHED MOVING AVERAGE ORDER RATE

MCR. K=MOVE (PCR. KL, M)

MCR=(UNITS/YR) MOVING AVERAGE PRODUCTION COMPLETION RATE

US*U.’B—U#’UZI:*‘U&U&

PSR.KL=FF*NOR.K+ZK2*(IMAER.K/12+MAER.K
+D2% (G*MOR. K+H*MSOR. K-MCR. K) )
PSR=(UNITS/YR) PRODUCTION START RATE
G=1+K/S

H=1-G

ZZ2Z 9«

FIGURE 9

Note: The variable MOR and the constants K,K,S have the same definitions

as in Figure 6.

To define a controller, it is now only necessary to obtain the values of the
constants ZK2, I2 and D2. For the second method, this is easily done by
running a simple program in batch mode to assess the characteristics of the
System. Basically, the program required is that of Figure 4 with the

following modifications:
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a) OR is set equal to zero.

b) Adding the additional equations

NOTE TEST INPUT FOR SECOND METHOD
PSR.KL=STEP (1,0)
CP.K=CP.J+DT#PCR.JK

CP=0

CP=(UNITS) CUMULATIVE PRODUCTION

o=

FIGURE 10
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The values of the constants aré derived from a PLOT of the variable CP. The
results for this system are shown in Figure 11 In terms of the value T
shown in the diagram, the necessary values are obtained as follows (Rijnsdorp,
1961):
Proportional Control

ZR2 =

L

12 =0

D2 =0
Proportional + Integral Control
ZK2 = 0.9

T
I2 = 3.3T
D2 =0
Proportional + Integral + Derivative Control

ZK2 = 1.2

T
I2 = 2T
D2 = 0.5T

Figure 12shows the performance of the system with Propertional + Integral +

derivative control, using the values ZK2 = 2,15, 12 = 1.1, D2 = 0.28 derived
from Figure 11 and both with (FF=1) and without (FF=0), a feedforward

element.
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Conclusions

The ZN methods are quick to apply. Once a choice of filter has been made,
the control equations are easily set up, since they take the same basic form,
whether moving averages or the more usual SMOOTHs are used. The relevant
constants can be quickly determined to give a reasonable basic controller
that can then be refined by further experiment. The three term form of the
controller is actually more sophisticated than those often used in System
Dynamics. Essentially they offer the opportunity of reducing the number of
experiments to be done to achieve a good control policy, since the major
independent variable to be manipulated is the type of filter and the
filtering time. A good guess at an appropriate value for the filtering

time can usually be made on the basis of what frequencies in the input that
should be as far as possible eliminated from the controlled variable. Thus
in the case considered, the strong six month seasonality in Order Rate suggested

the use of a 6 month Moving Average as the basic filter.
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