GENERAL FRAME OF RESOURCES,

STRUCTURE AND TRADE-OFF
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System Dynamics explores the use of scarce resources to
achieve some goals in a feed-back and possible feed-forward
framework. Information (including orders), material, human
resources, fixed capital and money have been the resources
to choose from. Information network, however, should always
be included in an SD model.

Besides information there is still another resource of an
integrating nature — time. Scarcity and uncertainty are
properties related to time. When scarcity of time is less critical
than scarcity of products, for example, a trade-off in materials
network between time and goods is economically meaningful:
products can be manufactured to inventory before they are
needed. Uncertainty about the future could make this choice
too risky, however, although it might be acceptable in a more
controlled situation.

All resources can be traded-off as they are to some extent
alternatives to each other. The concept of trade-off rests
on the idea of alternative costs and applies both to hardware
and software systems (14).

Every simplification implies assumptions. Exclusion of time as
a resource leads to the assumption that the only thing a
modeller can do is to explore beforehand theoretically and/or
by simulating, what should be done. This world-view leads to
a min/max strategy that is behind the concept of robustness:
the model should work properly even when there is gross
uncertainty about the future and/or the model itself. This
means, however, that new information about the nature
of uncertainty remains untouched. In Bayesian terms,
ex-ante information is being used, but ex-post information
disregarded.

It has been hypothesized that environmental turbulence will
be growing (1). If this happens, the cost of unused information
will increase in the future.

It is easy to construct an SD model in which a sales forecast
is added to utilise ex-ante and ex-post information. This kind
of construction does not convert time to an explicit resource,
however, as future uncertainty has not been treated as a trade-
off variable.

Suppose now that time has been selected as a resource. Time is
now an explicit variable which transforms the effects of future
uncertainty to some common terms, used by all resources.
Not before that can the trade-off problem be solved.

From time viewpoint information has two dimensions: ex-ante
and ex-post. Future is unknown in each ex-ante situation but
nevertheless the model builder looks ahead into the future a
group of time units, called collectively planning horizon.
In ex-post phase the modeller is, for some time, satisfied with
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only that information he receives from the true state of the
world. That slice of time is called time-increment.

It is not meaningful to proceed without planning. Therefore,
planning horizon and time increment are related in the
following way :
time increment < planning horizon < run-length

Run-length is a kind of land mark that fixes the time frame.
Both other aspects of time are actually variables but in a
research framework a kind of comparative static approach is
useful: they are treated as parameters which vary from run
to run depending on the experimental setting used.

A norm (or goal) is needed for guidance in the trade-off
process in order to find common terms for all resources. In
traditional SD modelling this norm is implicit and deduced
from the pattern of believed ideal relationships of the time-
series. As system structure is the main determinant of system
behaviour in feed-back and feed-forward models, model
builders try to improve it from run to run. The structure is
fixed within each run, however, as there is no over-all goal
available at that moment of time. On the other hand, system
structure can be made variable by including an explicit
objective function to the model and optimizing or quasi-
optimizing the function during the run. If the model structure
has been selected as a variable it increases reaction speed and
therefore might buffer from shocks.

Feed-back models can be quite robust to forecast errors but
major surprises certainly require very strong adaptive
mechanisms, like explicit use of model structure. By moving
in two-dimensional space of the time-resource it should
be possible to avoid time-variable combinations which are
sensitive to major surprises or catastrophes. If that does not
succeed, it is not likely that anything could have been done
better with other tools either.

Fixed model structure transforms into a variable one when
optimization by repetitive simulation using artificial
parameter-variables is being used (8). Translated to SD terms
it means that some rate equations will be changed by changing
heuristically some optimization algorithm variables, which
simultaneously define some rate equations as parameters.

It seems likely that the very concept of optimization is going
to change when the real possibilities of computers have been
accepted. Currently system dynamicists principally use
computersonly as extremely rapid calculators of routine work.
The situation is basically the same as that prevailing in
administrative EDP-applications field in the early sixties. SD
models have already been used to generate synthetic data from
the “real world” (13) but a further step is also possible: let
the model generate data that are needed to build or change
the same model, and by using an objective function to guide



the process (9)

Generally speaking, this leads to the extended SD
methodology to the group of model generators. This area is
going to be of growing importance because

(a) design effectiveness relative to competing
methodologies (like LP) improves. Improve-
ments in this respect are valuable to SD because
structure-oriented modelling methods are apt
to be tailor-made by their very nature.

(b) group deicision-making is likely to be the mode
of management behaviour in the future (7).
Therefore, a methodology will be required
which gives an integrating framework to
controversial interpretations of the real world
as it is or should be.

The comments above refer primarily to the ordinary model
building stage. More or less automatic use of structural
changes, when actually running the model, means however
that the model itself is going to correct its functioning and,
therefore, the model will be a model generator on continuous
basis.

Structural changes are of two types, depending upon the
totality of the change: relative or absolute. Relative change
means that some rate equations change during the simulation
run but information network remains unchanged. Change is
absolute when also information network changes. This occurs
because at least one rate-defining parameter receives a value
of O and thus eliminates some link connection in information
network.

Optimization can be made by changing the model structure
during the run-length or without doing it. To distinguish
between these two cases, expressions ‘dynamic’ and ‘static’
optimization will be used. Because of extra freedom gained by
a variable model structure, dynamic optimization should give
better results than that for static optimization. Reverse
situation indicates only that the surveillance function of
time-related trade-off procedure has failed.

The idea of structural changes can be utilized in many
situations, for example, in corporate modelling, in theory
formation in business economics, in estimating the value of
information currently or suggested, and in communication
theory.

Lack of SD paradigm elasticity regarding disaggregation is a
well-known handicap. Expressed in more general terms it
means that SD is not especially suited for purpose where
different hierarchial levels should be integrated into the same
model. This problem is not constrained only to system
structure, however, as every system consists also of goals and
actions. An SD model describes just one hierarchial surface
and cannot therefore include the over-all goal of the next
higher level, unless an objective function has been included.
This is because all policy corrections are implicit
transformations of the higher level deviation.

Thus far it has been assumed that structural changes are time-
related, i.e. are effects of structural changes in the real world.
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However, structural changes can also be triggered from
technical reasons as model size might require decomposition
procedures at a specific time (4), (9). From model behaviour
viewpoint there is no distinction between both cases.

To summarize: the general approach outlined above requires
three extensions to traditional SD modelling practices;
optimization, structural changes and inclusion of time as a
resource. The new elements interact with each other and the
old ones as follows:

Unknown future is being evaluated with ex-ante and
ex-post information, using all resources to estimate
proper reactions. It is the function of variable model
structure to generate the over-all response required,
using objective function.

The value of objective function, received from an
optimization process and combined with free judge-
ment of the modeller(s), is a changing norm because
aspiration level of the modeller fluctuates. Just in this
area the old but recently revitalized Behavioral
Theory of the Firm (1), (12) and SD meet cach other.

Changes in parameter-variable values overtake the role
of real variable changes in SD simulation. As a result,
freedom of the interactive modeller increases because
his decisions can now be.based on three kinds of
information:

(a) improvements in objective function values
(b) parameter-variable values and value changes
(c) time series of ordinary model variables

Earlier research related to the general frame

A Dynamo-based optimizing version SDRDYN was developed
at the Helsinki School of Economics in 1976. Its use (8),
applications based on static optimization (3), (8). (9) or
dynamic optimization under certainty (2), (10) have been
reported elsewhere,

In summer 1979 a new project was started, first to install
Dysmap to the HP-3000 computer at the Helsinki School of
Economics, and then to add to Dysmap new properties in
order to increase internal decision-making of the Dysmap-
language, and in the way the user decides. At the beginning
of February Dysmap version currently available allows the user

(a) to optimize heuristically through the SDR-
algorithm
(b) to optimize unlimited number of objective

functions (one at a time), using unlimited number
of parameter-variables, without translating the
model again

(¢) to simulate, to optimize without structural
changes, or to optimize with structural changes
either in absolute or relative sense

(d) to use ex-ante and ex-post information as alterna-
tives which the computer automatically recognizes
via a special parameter, KEY. The main rule is



that Dysmap treats KEY as zero unless the
modeller has not given it any other value. For the
time-increment phase, however, KEY is internally
interpreted having a value of one. Planning and
doing can thus be programmed into the same
equation.
An application of the general frame
To test the frame the first time the model should simul-
taneously be realistic and simple. Therefore, a real-life demand
curve was adapted from Coyle (5) and added to the well-
known Production-distribution Case from the Jarmain’s
Problem Book. A classical control engineering solution
(Jarmain’s alternative) static optimization solution and
dynamic optimization solution were then compared by using
as the yardstick a combined objective function that had
worked well before (8). This function minimizes the
cumulative cost of retail inventory, inventory change, and
production change. If the new frame is valid, dynamic optimi-
zation should give best results.

Those equations which are new or modified have been listed
below:

C KEY=0
A FCST.K=(1+BIAS*(1-KEY))*TABHL(TDMD, TIME.K+
X (1-KEY)*M1,0,100,10)

R RS.KL=FCST.K

T TDMD=75/85/120/95/110/105/100/95/90/82.5/75

C Mi=4

C BIAS=0.4

NOTE EQUATION FOR RETAIL ORDERS

R RO.KL=M2*ARS.K+(1-M2)*FCST.K+A1*(B1*RIDC+B2
*RID.K-RLK)

X /TAI+A2*((C1*DRO+C2*D DR.K)*(M2+ARS. K+(1-M2)
*FCST.K)

X -FOB.K)/TAPL

C M2=l

Other Definitions:

KEY = The internal switch parameter

FCST = Sales Forecast

BIAS = Forecast Bias factor

M1 = The weight given to the forecast four months
from now

M2 = The weight given to average sales

Retail sales

RS

Retail orders

RO

Decision parameters
(=parameter-variables)

Al L,A2B1.B2C1C2 =

Figure 1 below shows the experimental setting used in the study:
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Figure 1: Planning horizon/time increment combination used
for the study of 120 period run-length

Parameter-variables had the following upper and lower bounds:

0 = Al € 1] 0 < C1 < 1
0 < A2 < | 0 < C2 =< 1
0 < Bl < 1 1 < Ml < 10
0 < B2 < | 0 < M2 =0

The step size of the SDR-algorithm was 0.2 and the number of
iterations used was 30.

Fig. 2 collects results from the study into a three-dimensional
map where axes measure relative values of time. The ratio
of cumulative costs from each experiment to cumulate costs
from static optimization indicates the goodness of each
experiment in cost terms. The ratios show the height of the
relative-cost mountain at specific points. The value of point
(1,1) is 1 and it derives from the definitions used.

Saw-tooth pattern of demand causes extra costs, if planning
horizon interferes with that pattern, although there is over-all
decreasing cost trend when time-increment and/or planning
horizon is shortened. The smallest value of both parameters
(=20 weeks) increases costs significantly as the model has now
become “shortsighted”. The message of Fig. 2 is, however,
that it is easy to improve static optimization by structural
changes at least in this specific case.

Detailed analysis of optimizing behavior

Let us select from Fig. 2 the best value (0.62), the poorest
value (3.15) and the reference value (1.00) for a closer study.
Table 1 collects for each case parameter values and cumulative
costs of the “real world” run (with KEY=1).
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Figure 2: Comparison of dynamic optimization runs with the static run when forecast bias is 0.4

The upper portion of Table 1 gives information from the run
where planning horizon was 30 weeks and time-increment 20
weeks. In the poorest run both parameters were 20 weeks.
Comparison of parameter-variable data in Table 1 shows
that the best and the worst run differ especially regarding the
values given to parameters Al, A2 and B1. There is remarkable
difference in the smoothness of parameter value corrections
between both runs. If the planning-horizon/time-increment
combination has been poorly selected, parameter response is
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too heavy. Structure-driven behaviour of ordinary SD models
has now been transferred to parameters because of extra
freedom given to the system by structural changes. This
phenomenon can be seen clearly from Fig. 3, which shows the
values of Al as a function of Al-changing iterations
(=efficient iterations). The vertical lines indicate the point
(after 30 iterations) where new structure was selected for the
coming 20 time periods.




Time 0-20 21-40 41-60 61-80 81-100 101-120
Al 0.4 0.2 0.3 0.08 0.06 0.06
A2 1 1 0.825 0.845 0.865 0.885
Bl 1 0.98 0.805 0.825 0.845 0.825
B2 0.084 0.324 0 0.2 0.67 0.65
Cl1 0.912 0.892 0.902 0.902 0.902 0.902
c2 0.004 0.024 0 0 0 0
M1 4,792 8.752 9.562 9.922 9.822 9.922
M2 0 0.24 0.17 0.15 0.13 0.11
Cumul, cost [xlDE) 0.100 0.155 0.169 0.175 0.179 0.180
Al 0.912 0 0.375 0 0.02 0.02
A2 0.288 1 0.97 0.99 0.99 0.99
Bl 0.998 0.51 0.135 0.115 0.535 B8.135
B2 0 0.004 0.014 0.214 0.414 0.214
Cl 0.712 0.796 0.886 0.906 0.926 0.926
c2 0 0.084 0.086 0.066 0.066 0.066
M1 1 7.372 10 10 10 6.4
M2 0.252 0 0 0 0 0
Cumul, cost {xlDB] 0.603 0.725 0.793 0.853 0.892 0.910
Al 0.4
A2 0.728
Bl 0.912
B2 0.084
Cl 0.912
C2 0.084
M1 3.784
M2 0.936
Cumul. cost (xlDEJ 0.289

TABLE 1. Comparison of three optimization solutions
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Figure 3: Historical values of Al in efficient iterations

structural changes were made. Table 2 summarizes new
solutions thus received. The value of this modified model
in relative cost terms is 0.67, which is still way below 1 of the
static optimization model.

The case of the best run was optimized once more, but now
by “rounding” to zero all those parameter-variables that had
final values less than arbitrarily selected 0.1, each time when

Time 0-20 21-40 41-60 51-80 81-100 101-120

Al 0.4 0.2 0 0 0 0.270

A2 1 1 0.530 1 1 1

Bl 1 0.960 0.710 0.135 0.115 0.135

B2 0 0.440 0.710 0.135 0.535 0.535

c1 0.912 0.892 0.912 0.922 0.942 0.942

c2 0 0 0 0 0 0

M1 4,792 8.752 8.932 9,742 9.922 9.292

M2 0 0.240 0.260 0.210 0 0
Cumul. cost (x10%)  0.113 0.174 0.179 0.181 0.184 0.194

TABLE 2 The best run with absolute changes in structure

We had above an example of Dysmap working as a model generator, which produced 4 different models:
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Time 0-20 21-40

41-60

61-80 81-100 101-120

Average
Sales X X

Inventory X X

Patterns of
absolute
change

We can now see that there are really three kinds of informa-
tion use to choose from:

information sources and
information weighting remain
constant

(a) Constant use

information sources remain
constant but weighting

varies because of relative changes
in structure

(b) Mixed use

information sources and
weighting vary because of
absolute change(s) in the
structure

(c) Variable use

In the experiment under discussion, variable use of
information caused a slight cost increase but it might at the
same time lead to “savings”. For instance, it would motivate
organizational units when they see that today the moral
responsibility is at their hands, Perhaps management should
inform people working in the inventory area that inventory
size is so important that the control rule has switched the
inventory information on again. In short, with decision rules
using information rotation, employees might receive the same
kind of vision enlargement in future than traditionally only
a few people get with job rotation in management education.

Preliminary investigations indicate that dynamic optimization
might not be too sensitive to moderate forecasting errors.
Experiments with 30/30 combination of planning-horizon
and time-increment gave the following results:

Bias 0 40% 60% 80%
Cost
Ratio 0.59 0.67 0.59 1.35

It remains to be answered the question of how well the control
theoretical simulation model of Jamain’s alternative number 3
would do in cost terms when the test situation was the
same as before. The reply is: not too well, as the costs were
more than three times as high as in static optimization.

Let us finally look at time series received from the runs
discussed before:

(1) Simulation methodology (Jamain’s No.3) - - Fig.4

(2) Static optimization methodology (Reference Case)
--Fig. 5

(3) Dynamic optimization methodology
(a) The best run (30/20) - - Fig. 6
(b) The worst run (20/20) - - Fig. 7

The following conclusions can be made:

(A) All four pictures look different, which means that
optimization process has pushed the models to really
different real-world solutions

(B) The simulation model of case (1) shows least stability.
The situation might improve to some extent if a sales
forecast were used. Anyhow, optimization gave better
results

(C) Optimization models should be evaluated in light of the
objective function used. The function selected this time
for study emphasized inventory size and inventory
changes. There is no doubt that visual ranking of cases
(2), (3a) and (3b) corresponds with the ranking received
from the final values of the objective function used. This
is encouraging as objectives are a central concept in
modern business thinking, although the nature of the
over-all criterion may vary, for instance, from cost
minimization to profit, market share or ROI max-
imization.

(D) The study confirms that combination of information
uses, mentioned on this page, is useful for a modeller:
— improvements in objective function value
— parameter-variable values and value changes
— time series of ordinary model variables

Final Comments

The Study has shown how the concepts of resources, structure
and trade-off can be integrated into a bigger “whole”. After
all, this is not too surprizing as Systems Thinking and System
Dynamics are only two different domains of the same
RAISON D’ETRE.
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Figure 5: Static optimization run (The Reference Case)
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PRODUCTION-DISTRIBUTION SYSTEM

NOTE ORDINARY EQUATIONS

0O 00 9 " X = 0 3 0O o o o - - RO

RI.KL=RLJ+DT*(FP.JK-RS.JK)
FP.KL=PA K

PA.K=PA.J+DT*1/TAP*(PLI-PA.)

PL.K=FOB.K/WBD

FOB.K=FOB.J+DT*(RO.JK-FP.JK)
ARS.K=ARS.J+DT*1/TARS*(RS.JK-ARS.J)
TRID.K=WAS*ARS.K

RID.K=MAX(TRID.K, TVRLK)
TVRILK=STEP(450,TTC)

TTC=1000

DDE.K=FOB.K/PA K

DDR.K=DDR.J+DT*1/TDDR* (DDE.J-DDR.J)
PLD.K=(C1*DRO+C2*DDR.K)*ARS.K

K=0

FCST.K=(1+BIAS*(1-KEY)) *TABHL(TDMD, TIME.K+
(1-KEY) *M1, 0, 100, 10)

RS.KL=FCST.K
TDMD=75/85/120/95/110/105/100/95/90/82.5/75
M1=4

BIAS=0.4

NOTE EQUATION FOR RETAIL ORDERS
RO.KL=M2*ARS.K+(1-M2)*FCST.K+A1*(B1*RIDC+B2*RID.K.-RLK)
JTAI+A2*((C1*DRO+C2*DDR.K)*(M2*ARS.K+(1-M2)*FCST.K)

R
X
X
C

—FOB.K)/TAPL
M2=1

NOTE DECISION PARAMETERS

C
C

0O 0O 0

Al=1
A2=0
Bl=1
B2=0
Cl=1
C2=0

NOTE ORDINARY PARAMETERS

O N0 0 0600

TAP=4
WBD=2
TARS=1
RIDC=400
TAI=2
DRO=2

RETAIL INVENTORY

FACTORY PRODUCTION

PRODUCTION ABILITY

PRODUCTION INDICATED

FACTORY ORDER BACKLOG

AVERAGE RETAIL SALES

TRIAL VALUE FOR RETAIL INV DESIRED
RETAIL INVENTORY DESIRED
TERMINAL VALUE OF RETAIL SECTOR
TIME FOR TERMINAL CONSTANT
DELIVERY DELAY ESTIMATE
DELIVERY DELAY RECOGNISED
PIPELINE ORDERS DESIRED

RETAIL INVENTORY (IF A CONSTANT)
TIME TO ADJUST INVENTORY
DELAY IN RECEIVING ORDERS



42
43
44
45
46
47
48
49
50
51
52
53
54
52
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

C TAPL=2
C WAS=4

C TDDR=2

NOTE INITIAL EQUATIONS

N
N
N
N
N

NOTE

RI=400
FOB=200
PA=100
ARS=100
DDR=DDE

NOTE CFPCO IS AN OBJECTIVE FUNCTION CANDIDATE

O Zrc > A Z -

LFP.K=LFP.J+DT*(FP.JK-FPLIK)
LFP=100

FPLKL=LFP.K

FPCHA.K=FP.JK-FPLJK
FPCOST.K=PARA1*FPCHA K*FPCHA.K
CFPCO.K=CFPCO.J+DT*FPCOST.J
CFPCO=0

PARA1=300

NOTE CRICH IS AN OBJECTIVE FUNCTION CANDIDATE

5 o s ]

RIR.KL=RLK
RILK=RIIL.J+DT*(RIR.JK-RILJ)
RI1=400

RICHA.K=RI.K-RILK
RISCH.K=PARA2*RICHA.K*RICHA.K
CRICH.K=CRICH.J+DT*RISCH.J
CRICH=0

PARA2=3

NOTE CRICO IS AN OBJECTIVE FUNCTION CANDIDATE

A
L
N
C

RICOST.K=PARA3*(WAS*ARS.K-RLK)*(WAS*ARS.K-RLK)
CRICO.K=CRICO.J+DT*RICOST.J

CRICO=0

PARA3=0.03

NOTE DERIVED OBJECTIVE FUNCTION

A

OBJF.K=CFPCO.K+CRICH.K+CRICO.K

NOTE OUTPUT SPECIFICATIONS

PRINT 1)RS,RO,RI,FOB,0OBJF

SPEC DT=1/LENGTH=23/PRTPER=1/PLTPER=0
RUN

+

+*+%x MULTI-OBJECTIVE PART OF THE MODEL **%%x

TIME TO ADJUST PIPELINE
WEEKS OF AVERAGE SALES

TIME TO ADJUST DELIVERY DELAY RECOGNIZED

FACTORY PROD COST
CUMULATIVE FACTORY PROD COST

COST PARAMETER NUMBER ONE

CUMULATIVE RETAIL INV COST

COST PARAMETER NUMBER TWO

CUMULATIVE RETAIL INV COST

COST PARAMETER NUMBER THREE
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