NONLINEARITY IN SYSTEM DYNAMICS MODELS

Part I

Dr. Pratap K.J. Mohapatra

Abstract

This paper classifies nonlinearities in System Dynamics Models
into three types. Procedures are indicated to resolve these
nonlinearities and transform the models to linear ones.

1.  Introduction:

System Dynamics Models are well known for their ability to
depict nonlinear relationships. These do not pose any problem
for the model to be run and system behaviour generated.
However, the analysis of the model becomes very difficult.
Therefore, for ease of model understanding, there exists a need
to generate a linear model which would approximate to the
behaviour of the actual model. Another advantage of a linear
model is that one can use linear Control Systems theory for a
thorough analysis and design of the model system.

A cursory survey of linearization attempted in system
dynamics literature indicates two types of approaches. The
first is that by Ratnatunga and Sharp (1) who have proposed
linearization and order reduction based upon perturbation
techniques. The availability of a low-order linear model
makes this approach quite attractive. But the additional
compufational effort and the exotic nature of the approach
makes it a difficult tool to apply. The second approach is
based upon local linearization by partial differentiation, and
has been adopted by Cuypers (2) and Cuypers and Rade-
maker (3) in the analysis of World 2 model of Forrester (4).
This is a relatively simple approach. Ratnatunga (5) has used
this approach to generate the system matrix of an SD model
in the new version of DYSMAP. Although an automatic
linearization by DYSMAP would greatly facilitate model
analysis, it is felt that model understanding would be poorer
without the personal involvement of the model maker. There-
fore, it is argued in this paper that model improvement in
the form of model simplification is first necessary before
attempting for linearization, whether done manually or
automatically.

2. Characteristics of Linear and Nonlinear Systems:

A very naive but important aspect of model construction is
to recognise the linearities and nonlinearities of the model.

Conceptually, a system is said to be linear if a state variable
is related to its rate of change in a linear fashion. Fig.l depicts
a system which is linear.

The rate of change of the level variable in Fig. 1 is (MRR—SR)
and not MRR alone. Therefore, a precise mathematical defini-
tion of linearity is desirable.

‘A system is said to be linear if it obeys the principle of
superposition.’
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Proof:

Let the system with the following state equation be considered
x=Ax + BL s kD)

Let at two instances the values of state variables, exogenous

input variables and the rate of change of state variables be

given respectively by X ¥ & and X9, Uy, 32 such that the
following holds

X1 = A x +BY oD
X = A xp + BY L)

Principles of superposition demands that the rate of change of
state variables corresponding to the values of state variables
and control variables at

(x1 + x2)and (u] + wp) respectively be
d
X1 + %2 =74t (x1 *+ x2)

In fact adding the left hand sides and the right hand sides
of Eqn. (2) and Eqn. (3) one gets the same result,

viz.
X] + X2 = Ax] + Axpy + By + Bup
or

d
at [x1 +x0] = Alx; +x] + B[¥; + 221

Thus the principle of superposition holds and the system
modelled by Eqn. (1) is linear.

The above proof holds true even when the elements of A and
B are time-varying, or are functions of exogenously defined
input variables, because superposition applies, although as
Gibson (6) points out the response of a given system to a
given input very definitely depends upon the time at which
the input is initially applied.

Unfortunately, there is no accepted definition of nonlinearity.
In fact Gibson (6) is of the opinion that nonlinear systems are
simply all those systems that are not linear. Therefore,
although the class of systems whose parameters are state-
dependent (i.e. if the elements of A are functions of state
variables) are nonlinear, they do not provide sufficient
conditions for nonlinearity.

Although the mathematical definition of linearity is precise,
the conceptual definition given earlier can very well serve as
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a working guide to identify linearity or otherwise. In fact it
is contended here that the analogue scheme of representation
as suggested in an earlier paper (Mohapatra (7)) is capable of
indicating nonlinearities, when present.

3.  Broad Classifications of Nonlinearities:

It is possible to express a linear SD model in the differential
equation form and the elements of the plant matrix can
be derived from the constants associated with ® — operators
along the path between two state variables (Mohapatra (7)).
One many encounter two types of difficulties in the process
of computing path transmittance. These are (i) presence of
functions like MAX, MIN, CLIP, TABLE and TABHL etc.,
and (ii) association of ® — operators with other endogenous
variables rather than constants. These are indicative of
presence of nonlinearities.

Nonlinearities can conveniently be classified into three types:

a) nonlinearities due to use of limiting functions
such as MAX, MIN or CLIP.

b)  nonlinearities due to the presence of table
functions along a path.

c) nonlinearities due to the association of some of
the ® — operators along a path with variables of
other paths.

All possible combinations of these three types of nonlinearities
may actually occur in an SD model.

4. Nonlinearities due to use of Limiting Functions:

This type of nonlinearities usually occurs when the model
maker wishes to constrain a variable so that it does not go
beyond a limit value. MAX, MIN and CLIP functions usually
fallin this category. These functions usually create sharp
discontinuities which cause nonlinearity only at the points
when these functions become active.

Two ways may be proposed to tackle the situation;

a)  The functions may just be deleted from the final model

because it may be redundant. The redundancy might be
due to an unnecessary inclusion in the first place or
because it might no longer be required since it was
first included to overcome some unwanted model
behaviour in the initial phase of model building but
eventually an intelligent fine tuning of the model makes
it redundant.

b)  The limiting functions may be substituted by table
functions. Though the latter is a nonlinearity, it is
relatively easy to linearize it and would be discussed
later. In many aggregative situations table functions
may be more realistic than limiting functions.

Certain examples, drawn from students’ theses, are given
below for elucidating the points.

Example I:

Fig. 2 illustrates an example ¢f misuse of CLIP function.

In this particular example the use of CLIP function is
redundant since SRT — INV — SRT is a first-order negative
loop whose property is asymptotic growth or decay meaning
that INV is guaranteed to be positive. Therefore use of CLIP
is definitely unwise.
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Example II:
Fig.3 is a model with two MAX functions. Fig. 4 & 5 are
its simplifications.

Fig. 5 is correct only when printouts of CFLOW for various
runs would show that it is greater than or equal to zero for
all cases.

Example II1:

Fig. 6 depicts a situation in which the cash discrepancy
is met immediately by credit from bank provided current
ratio is low, but is paid back as soon as possible due to
high interest rate, subject to availability of funds. The
liberal use of DT, MAX —, and CLIP — functions may not
be worth the trouble because this may form a very trivial
part of the original model. Also, immediately borrowing
the positive cash discrepancy may defeat the very purpose
of minimum cash level. The sharp discontinuity at current
ratio = I may not also be a practical proposition. Similarly,
repaying after DT — time does not seem to be a very sound
practice.

Fig. 7 shows how TABHL functions may be used instead of
MAX and/or CLIP functions. The remaining MAX function
may also similarly be substituted by a TABHL function as
shown in Fig, 8.

The wisdom for using so many TABHL functions may of
course be challenged. But at least the latter does not provide
sharp discontinuities.

Example IV:

Fig. 9 shows a redundant use of MAX function and it is also
possible to eliminate the MIN function by means of a table
function which discourages shipment rate if clinker stock
falls short of a desired value.

It may be mentioned that though it is not possible to get rid
of such limiting functions in all cases, in most of the cases,
especially in aggregative situations, elimination of such
functions may both be feasible and desirable,

5. Nonlinearity due to Nonlinear Relationships (Defined
through Table Functions) between Consecutive
Variables:

This class of nonlinearity is relatively easy to resolve. Usually

a table function reflects the assumptions of the analyst

regarding causal relationships between two variables.

Therefore, any variation from the set relationships should

not cause great concern, particularly when the operating zone

is approximately linear,

The standard practice in SD modelling is to consider very high/
low conceivably feasible values for the causal variable and
draw the relationships. But in most cases the operating zone is
quite narrow. Therefore, in such cases an assumption of
linearity in the active operating zone may be very appropriate.
However, in cases where sharp changes in slopes occur, only
piecewise linearity would be a valid assumption. The actual
operating zone has, of course, to be ascertained by running
and rerunning the model,

Some examples are given below to clarify the points.
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Example A:

Sales rate, defined in Fig. 10, is exogenous. Hence, if it is
assumed to undergo a 40% step increase, then naturally the
maximum value of ASR can only be 140, if the original
steady state value is 100. Therefore, one may approximate
the above drawn model by that shown in Fig. 11 where M
equals the slope and C is the intercept of the straight line,
approximating the active part of the table function. If,
however, the sales rate is contaminated with a sinusoidal
fluctuation with amplitude equal to 40% of the steady state
value, then the minimum value of ASR will be lower than 100.
In such a case three procedures may be followed.

(i) The range of ASR in the Table function may be increased
to include this value of ASR because after all the present
TABHL function is only a hypothesis and is not exact. For
example, a value of 350 for RBL may be taken for ASR
equal to 50 and be incorporated in the TABHL function,
and thus a suitable straight line may be fitted. Such inclusion
of additional points may be defended on the grounds that,
after all, table functions are based upon conjectures and that
the limit values of the causal variable should, after all, be
included.

(ii) A straight line may still be fitted (probably with a gross
simplification) if the achieved limit value is close to the
defined limit value. For example, when minimum value of
ASR is less than 100, but close to it then the dotted line
shown in Fig. 10 may be assumed to fit the function.

(iii) The last resort is, of course, to have piecewise linearity
fits.

For example,

( (ASRK)M) + C if ASRK > 100
400 if ASRK < 100

RBLK =

Example B:

Fig. 12 illustrates an example where the analyst presupposes
an apparently non-linear form of causal relationship between
PDSFAC and ADCR. Therefore, a quick glance reflects the
view that the function can be broken down conveniently
to three piecewise linear forms

a) ADCR<0.9 b) 0.9<ADCR<1.2
¢) ADCR>-1.2

However, all the runs for the model of which the above
diagram is only a part, reveals the fact that all the values of
ADCR are between 1 and 1.3496. Hence, only two piecewise
linearities need be defined. Equation defining PDSFAC may be
written as

A PDSFACK = MAX (PDSFCT.K.0)
A PDSFCTK = M * ADCRK +C ~u43)
NOTE M IS SLOPE AND C IS INTERCEPT

]

However, only one straight line may also be fitted and the
results may also be tested. If the results are acceptable then
such a fit may also be accepted.
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6. Nonlinearities due to Multiplying Effect of Multiple
Causal Variables upon another Variable:

This type of nonlinearity is identified as soon as one confronts
a ® — parameter along a path being associated with a variable
of another path, rather than a parameter. Such cases are quite
common in SD and are quite hard to tackle. Two approaches
are discussed below for linearization. The first takes advantage
of the particular structure of nonlinearity and the second,
which is based on partial differentiation, assumes that
although a sub-system is nonlinear, small perturbations of the
variables are related linearily.

6.1 Linearization made feasible by Particular Model Structure

Certain types of model structure help resolving nonlinearities
quite easily. Certain examples follow.

Example a:

Figure 13 depicts a case in which RCOL is a function of AOL
and PPDSE, the latter being a model variable. In computing
the transmittance cf the path between AOL and OL, one

comes across one ® —symbol which is not associated with a
parameter, but which is a function of other variable such as

PPDSE. Therefore, this implies a nonlinearity situation.

Various runs of the original model of which Fig. 13 is a part.
confirm that the range of X is 1.0912 < X < 1.7560. A
straight line when fitted to TPDSE in this zone band of X
provides one with slope = M = (.86, and intercept = C =
—0.86. Therefore, one may write the following:

R RCOLKL = (AOLK) (X.K*M +C) )

But X.K = PPDSE.K/AOL.K ekl
Using Eqn. (7) in (6), one obtains the following:

R RCOL.KL = (M) (PPDSE.K) + (C) (AOL.K)

e M=0.86 S ia(8)

C C=-0.86

The corresponding visual representation is shown in Fig. 14,
C is taken as 0.86 and not-0.86 whereas the arrow inputted to
® — operator has now a — sign, so that the actual direction
of causation is retained.

Example b:

Fig. 15 represents another case where a seemingly complex
nonlinearity can be resolved fairly easily. Various computer
runs indicate the range of DCR as 1 < DCR < 1.3580. Then
the table TDCR is defined in a different way and is shown in
Fig. 16, where the x-axis is taken as the reciprocal of DCR.
The operating range of DéR is now 0.74< 1 R(-,l where 0.74
= T?SIS'O' A straight line which fits this operating zone of
1/DCR has slope M = 72.7 and intercept C = -6. Therefore, the
equation for OV is given by the following :

AOVK = (CAPACK/OLK)(M) + C =49
Therefore, from Fig.15 the following equation may be written:
INFLOW.K = (OLK)(OV.K)

= (OLK) [( CAPACK m)+C]
OLK
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or,
A INFLOW.K = (CAPAC.K) (M) + (OLK) (C)
C M=727

C cC=-6
The equivalent representation for Fig. 15 is then given by
Fig. 17.

()

It may be noticed in Fig. 17 that C = 6, and not -6, whereas
@®- operator is now having an arrow with — sign. This way
of representation keeps intact the direction of causation and,
therefore, the ultimate polarity of loops.

As is said earlier, this way of linearizing is feasible only if the
model structure permits it and this can never be generalized.
In the next section a general method of linearization is
discussed.

6.2 Local Linearization with First-Order Accuracy:

The earlier approaches should first be used wherever possible
to free the paths between state variables from containing
@ — operators associated with variables and not parameters.
As long as @ — operators are associated with variables, non-
linearity persists and the usual approach for the computation
of path transmittance fails. In such a situation it is possible to
approximate such that the small perturbations from the
reference points may be assumed to be linearly related
although the actual relationships among the variables are
nonlinear.

It may be shown that if the ith state variable is related with
other state variables by the following state differential
equation:

*i[t] = -Fi [)(1, e Xn] Vi = 1;|opl'| __(ll)

then a small deviation from the reference trajectory is given
approximately by

8« B s amie b Vel o
i 1 n
a>-:.I Ix
n
w12}
C L i s -
where 371 indicates the partial derivatives w.r.t. the jth state

variable, Xjs and ij is the small deviation from the nominal
value of Xje

Therefore, the Eqn. (12) may be written as

éx (t) = A 8x (t) 13

where, A is the Jacobian Matrix of partial derivatives given by
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E IRERN __a_'F-
axl an
A =
af vesee ltl'l
.
—Bxl an-

The partial derivatives are to be computed at some reference
values and the assumption of continuity is quite evident. This
is the reason why the sharp discontinuities like MAX, MIN or
CLIP functions are first to be converted to continuities
(as discussed in 84). This type of linearization provides
accuracy upto first-order. This is illustrated by the following
examples.

Example 1:

Paths to ADCR from OL and CAPAC in Fig. 18 pass through
@ — operators containing variables rather than parameters,
thereby presenting cases of nonlinearities which can only be
resolved by local linearization. From Fig. 18 one obtains the
following:

4 .k s
AOCR(E) = A [ocRCt) - ACR(E)

dt
ooy o8 _  ADCR(t)
CAPACTE)* TADCR TADCR

s o K1)
The small perturbation is then given by

5 : ¥
age ADCR[t}J - PR X T x oloce]

- B« s x o[

ke
TADCR

2 [aocr )]
2 (15)

Egn, (12) may be written in the following form:

4 i - -1] |a0L(t)
%o roemce)] [{mulm GEkIEs ‘4_1

3CAPAC(t)
JADCR(t)

e {10

It may be noticed here that the initial values of OL and CAPAC
have been used in the computation of the partial derivatives.
Eqn. (15) indicates that path transmittances between small
deviations can be computed from a different type of figures, as
shown in Fig. 19 and 20.

Example 2:
Suppose that the table TPDSF can be linearized such that
A PDSFACK = (ADCR.K) (M3) +C3 el

then, since ® — operator in Fig. 21 is not associated with a
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dividing variable the following equation may be directly
written from Fig. 21.

§TAPAC(t)
4 [sprosce)] = [ay ;o 8] [soee)
SADCR(t)
§PPDS (£)
where,
a; = (M2 — CMC) * [(M3) * ADCR (0) + C3]/TPPDS
ay =  —C2* [M3 * ADCR (0) + C3] /TPPDS
a3 = M3 * [(M2-CMC) * CAPAC (0) — C2*OL(0)]
/TPPDS
ag = —1/TPPDS

It may be noted that
M3 * ADCR (0) + C3 = PDSFAC (0)

Thus from the above two examples it is understood that as
long as there is no variable along a path which is used to
divide another variable, one can use the same method of
computation of path transmittance, but now it is to be defined
between the first order deviations of the staie variables.
However, if a variable is dividing along a path (like that in
Fig. 18 defined between CAPAC and ADCR), it may be
supposed to be associated with ( — 1/variables<) (as shown
in Fig. 20).

7.  Chapter 9 Problem (Coyle(8))

Fig.22 depicts the analogue representation of the Chapter
9 Problem by Coyle(8). Apparently it is a highly nonlinear
system since it is beset with all types of nonlinearities
discussed earlier, viz., (i) sharp discontinuities like two MAX
functions, (ii) TABHL functions like TPDSE, TPDSF and
TDCR, and (iii) variables are defined by multiplication and
division of other variables like six such operations are
present.

The table functions, TPDSF, TPDSE and TDCR, are already
shown in Fig. 12, 13 and 15 respectively.

Various runs and print outs of the variables indicate the
following ranges of some of the key variables:

1,0000 < DCR =<1,3580
1,0000 <ADCR <1,3496

R e
PPDSE
1,0812 <X= . <1.7560
1170 < CFLOW
Eqn. (19) and table function TPDSF indicate that
0 <'PRSEAE = 6,15 e 20

Eqn. (20) and (19) obviate the need for the two MAX
functions (see also Fig. 3,4 and 5).

It is obvious now that the operating parts of TDCR and
TPDSE can be conveniently linearized. TPDSE may be
approximate by

PDSMK =(0.017Z; {PPDSE.K/AOLK) — 0.0172
sk2l)

1
Defining the x-axis of TDCR as (ﬁ) and linearizing the
active part of the function, the following may be written:

OVK = (72.7) (1/DCRK) — 6 08

Taking advantage of the special structure of the model (see
Fig. 13, 14, 15, 16 and 17) one would be able to get rid of
two TABHL functions and four @ — operators.

TPDSF cannot be substituted by one straight line but piecewise
linearization of the following type seems feasible.

PDSFACK = MAX(0, -1.3*ADCR.K+1.45) 23
This assumes that PDSFAC = 0 when ADCR > 1.11. Thus

while the table function is eliminated, a sharp discontinuity
has been created, therefore, the model is not fully linearized.

Running the model with these modifications gives quite similar
results, therefore it must be acceptable. Values of PDSFAC,
when tabulated, show that it is never zero. Hence the MAX
function can also be eliminated. Eqn. (23) may be written
as the following:

PDSFAC.K =- 1.3*ADCRK + 145 ... (24)
Fig. 23 shows the simplified analogue representation of
Chapter 9 problem. It may be noticed that only one & —
operator associated with variables remains necessitating use
of first-order deviations for linearization. If one ignores the
smoothing level variable ADCR, then it is also feasible to get
rid of this nonlinearity, since one can take advantage of the
special structure of the model.

8.  Conclusion:

This note makes an attempt to classify various types of non-
linearities encountered usually in SD models. Techniques
are discussed which make possible the elimination of non-
linearities in most of the cases.

An outgrowth of the present discussion could be a desire on
the part of the analyst to have DYSMAP facilities extended
to cover the following cases:

i) to automatically indicate if the limiting functions
are inactive (because printouts are not obtained

usually after each DT)
to automatically indicate the active portion of the

table functions, and the slopes and intercepts of
the best linear fit over this range.

and i)
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