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ABSTRACT

This paper discusses an algebraic and a diagrammatic method
to highlight the structural equivalence between Control
Systems Theory and System Dynamics. An analogue scheme
of visual repiesentation to SD Models is suggested which
makes it possible to express the SD model in the form of a
vector-matrix state differential equation. An obvious duality
of this representation with the signal flow graph helps
computing the elements of the system matrix.

1.  Introduction

It is well known that the concept of feedback is intrinsic to SD
and that one of the major factors responsible for the develop-
ment of SD is Feedback Control Theory (Forrester (1.
In a recent article Sharp (2) has pointed out many potential
applications of Control Systems Theory (CST) in SD. Some
such applications are already reported by Rademaker (3)
on the World Dynamic Studies. However, mostly due to its
mathematical sophistication, control systems theory has
not been widely accepted by the system dynamicists.

The purpose of this and the attendant paper (4) is to highlight
the structural equivalence between CST and SD. The papers
are directed towards System dynamicists with limited or no
exposure to CST with a hope that these will sufficiently
motivate them to make use of available techniques and results
of CST in the context of SD.

2. A Fundamental Difference in Modelling Approach:

In SD, the most important variable is the level variable which
is created in flows and which is modelled as the initial level
value plus the net flow into the level. For example, inventory
(INV) created between production rate (PR) and shipment
rate (SR) is modelled as

L ;NV.K =INV.] + (DT) (PRJK — SR.JK)
N INV =INVI

Now if the solution time, DT, is very small (i.e. if DT tends to
zero, written DT —> 0), these equations may be written as
an integral equation of the following form:

INV(t) SR(t) ] dt

I

INV(t=0) + f ; [PR(t)

or,

INV(t)

I

INVI +j:) [PR(t) ~ SR()] dt ....... (1)
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Thus Levels are integrations and the SD modelling approach
conforms to the exact direction of causation as in the real
world. That means the modelling approach considers net flow
[PR(t) SR(1)] as the cause and INV as the effect as is
really the fact.

If Egn. (1) is differentiated w.r.t. time, the following is
obtained.

d
CINV(t) = PR(t) — SR()  aeeee (2)

dt

- SR(t)

Equation (2) represents the instantaneous change in INV(t).
Of course, the initial inventory is given by

INV(O) = INVI (3)

Thus Egn. (1) is structurally equivalent to Eqn. (2) and (3).

CST favours Eqn. (2) and (3) rather than Eqn. (1). But in
Eqn. (2) INV has been presented as the cause and [PR(t) —
SR(t)] the effect. Thus CST demands mathematical form-
ulation of systems based upon differential equations (and
not integral equations as in SD) and, thereby, reverses the
real direction of causation. This has earlier been pointed out
by Forrester (5).

An important observation to make is that mathematics
literature is replete with solution methods to differential
equations (rather than to integral equations) and, hence, CST
enjoys a definite advantage over SD in model analysis and
design. Therefore, differential equation representation of SD
models is desirable to bring about a structural equivalence
between the two techniques and consequently to be able to
apply some results of CST to SD.

3.  Differential Equation Representation of SD Modules:

It is well known that auxiliary variables are subdivisions of
rate variables. That means it is feasible to write SD model
equations in terms of levels, rates and constants only. It is
also known that rates are expressed in terms of levels and
constants. So if one transforms the level (integral) equations
into differential equations and replace rates in these equations
by appropriate levels and constants, then the resultant set of
differential equations completely represent the SD model.
Such form of representation is the starting point for any
control theoretic analysis.
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The steps involved in such a representation may be

summarized below:

. Express rates in terms of levels and constants only.
If any auxiliary variable is smoothed, express the
auxiliary variables in terms of levels and constants
also.

STEP I

- Replace rates in level equations by relationships
containing appropriate levels and constants.

STEP II

Convert the level equations to differential
equations and use the subscript, t, instead of J, K,
JK, and KL.

STEPIII :

Level variables are called State variables in CST, and the
differential equations are called State differential equations.
It may be pointed out here that in addition to the state
differential equations, one has to specify the initial value
equations to completely represent the model. A method to
avoid explicit use of initial value equations is to substitute the
level variables by the discrepancy of the level variables from
their initial values.

It may be noted here that this form of representation gives
no information regarding rate, auxiliary or any supplementary
variables where as, in SD, many such variables may be of
interest. These variables of interest may also be expressed in
terms of levels and constants. Such equations are called outpur
equations. Thus output equations are not necessary to
generate dynamic behaviour of the system but give
information on variables other than the level variables.

3.1 A Single-Order System :
Consider a singel-order SD model consisting of a negative feed-
back loop the influence diagram of which is given in Fig. 1.

The Dysmap equations of such a system are given by the
following:

L LEVK = LEVJ + DT * RTJK
N LEV = 100

R RTKL = DISCK/TMD

C TMD = 4

A DISCK = DLEV — LEVK

C DLEV = 1000

One may follow the steps outlined earlier to obtain the state
differential equation,

STEPI : RTKL = (DLEV - LEV.K)/TMD
STEPII : LEVK = LEV.J + DT *DLEV — LEV.J)/
TMD
STEPIII : d LEV(t) = —(_1 ) LEV(t) + DLEV
dt TMD T™MD
...... (3)
The initial value equation is of course given by
LEV(o) = 100 = ae.ee. (4)

Eqgn. (3) and (4) completely represent the single-order system.

Defining lev(t) = LEV(t) — LEV(o)
and replacing LEV(t) by lev(t) +LEV(0), Eqn. (3) may be
written as the following:

dlev(t) = — 1 lev(t) + DLEV — LEV(o) ...... (6)

dt T™MD TMD

Thus Eqn. (6) may be written as a substitute for Eqn. (3) and
(4).

A passing remark may be made about Eqn. (3) and (6). A state
equation in terms of the transformed state variable may bring
in some more terms in the R.H.S. Also if the initial value of
a transformed state variable is zero, it need not be specified.
For example initial value of lev(t) = lev(o) = LEV(o) —
LEV(0) = 0, so it need not be written explicitly.

32 A First-Order Delay:
A first-order exponential delay is represented by the following
SD equations:

L LEVK = LEVJ + DT *INJK — OUTJK)
N LEV = (IN)(DEL)

R OUTKL= LEV.K/DEL

CDEL =6

Following the three steps outlined earlier the equivalent state
differential equation is given by

d Lev(t) = IN(t) — 1 gy B

3 DE w (7
The initial value equation is of course

LEV(o) = IN(o)*DEL ... (8)

Usually, the outflow of a delay, and not the level stored
in a delay, is used elsewhere in the system. So a differential
equation in terms of the outflow seems desirable.

Defining OUT(t) = LEV(t)/DEL, Eqn. (7) and (8) may be

written as

d OUT(t) = 1 IN() — 1

dt DEL DELOUT(t) ...... 9)
and

OUT(o) = IN(oe) . ... (10)
Again defining out(t) = OUT(1) OUT(0), Eqn. (9) and

(10) may be written as the following:

d out(t) = -1 out(t)
dt DEL

+ 1 [IN(t) +
DEL OUT(0)] """~

Since the initial value of out(t) = OUT(t=0) — out(o) = O, the
initial value for out(t) is not necessary to be explicitly written.
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Egn. (9) and (10) may be rearranged in the following way:

dout(t) = 1 -
= DEL [IN(t) ouT(®)]  ...... (12)
out(o) = IN0) ... (13)

Eqn. (12) and (13) are equivalent to SMOOTH equations in
SD. This tallies with our previous knowledge that SMOOTH
equations are equivalent to first-order exponential delays.

3.3 A Third-Order Exponential Delay

A third-order exponential delay is equivalent to three first-
order exponential delays with each constant, DEL.

3

Following the three steps, the state differential equations for a
third-order delay may be written as the following:

d LI(t) = IN(t) —_3 L1(t) ]
dt DEL ]
4 L2 =_3 LIt - _3_ 12(t) %
dt DEL DEL ] e (14)
j_ L3(t) = 3 L2(t) — 3 ]_.3(0 %
dt DEL DEL ]
Initial value equations are of course given by
Li(o) = L2(o) = L3(0o) = IN(o) * (DEL/3)
...... (15)

L1, L2 and L3 are the three levels in the third-order delay.

The number of differential equations will always equal the
order of the system. The three equations in Eqn. (14) may be
represented in a vector-matrix form as the following:

) = Ax®)+bz(@® ... (16)
where,
I _ - e
LI(t) g%f 0o o 1
=3 &
x®==2ml; Al 55 per 0 [ B 0
3 -_—
3] | 0 DEL DEL] 0
LI(t)
Xt =d L2(1) = dx(t); z(t) = INQ).
dt dt
L3(t)

Eqn. (16) is called the vector-matrix state differential equation
and is a popular way of representing systems in CST.

Since the outflow rate from a delay is used elsewhere in a
system it may be desirable to define rates to be state variables.
Hence, one can proceed as in§3.2 to get the transformed
state vector-matrix state differential equation.
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4,  Vector—Matrix State Differential Equation of an SD
Model:

An example from Coyle (6) is used here for the sake of

illustration. The influence diagram for the base run of the

example is reproduced in Fig. 2.

It may be observed in Fig. 2 that TRBL is a table function
which is actually nonlinear in shape. The actual DYSMAP
equations used for the base run are the following:

A RBLK = TABHL (TRBL,AORK, |
50,150, 25) ]

]

]

T TRBL = 400/525/600/650/675

For the sake of simplification the following equation may be
written for RBL:

D TMRBL = (WK) Time for

A RBLK = (AORK) (TMRBL) %
J
Required Backlog ]

| o

C TMRBL = 6 ]
Elaborate methods to transform nonlinearity to linearity are
studied in the associated paper (4).

Following the three steps indicated earlier the vector-matrix
state differential equation of this model may be written as

x(t) = Ax(t) + bz(t) ISBII §
where,

r— = ' =

INV -1

ASR .

TASR

AOR 0
X ® s )B= 2 and z(t) = SR(t)

APL 0

L1 0

L2 0

L3 0
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Figure 1 Influence Diagram of a Single-Order Negative System
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Figure 2

Influence Diagram of the Example under Consideration
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It may be indicated here that considerable effort is called for
representing an SD model in the form of state differential
equations. Eqn. (19) can generate dynamic behaviour of
interest. But it gives no information on auxiliary or rate
variables of interest. One has, therefore, to use the output
equations. Thus if Factory Order Rate (FOR) and Produc-
tion Start Rate (PSR) are the non-state variables of interest,
the corresponding output equations are given by the
following:

PSR(t) = APL(t)
FOR(t) = TAXWINVD  xAgR(t) — L. *INV(t)
TAI TAI

...... (20)

In the vector-matrix form this may be written as

y(t) = Cx(T) .(21)
where,

[st o 0. Gl oy By 28 0
ye C=
- -1, TAIsWIND, 0, O, o Db

| 2 =5 B9 86, -0, 8

5. General Forms of State Differential Equation and
Output Equations:

In Egn. (19), there exists only one exogenous variable, z(t).

But in general, there may be q,g > o, number of exogenous

variables. Also there may be some constant vectors as present

in Eqn. (3) and (6). Hence, the general form of a state

differential equation is the following:

x(t) = Ax(t) + Bz(t) +e

and the corresponding general form of an output equation is

M= R I e (23)
where,

x(t) = (nx1) state variable vector

A - (nxn) system matrix

B = (nxp) disturbance matrix

z(t) = (px1) exogenous variable vector
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0 0 0 0 per
0 S A
0 & 5n®
0 S D
Ao PP 0 O O
0 1 2= 0 O
0 e
0 0 'P_SEI:PEI%E_

(nx1) constant vector

|l
[}

)= (gx1) output variable vector
C = (gxn) output matrix
D = (gxp) matrix

a4 = (gx1) constant term vector

Ot these vectors and matrices the A-matrix is the most
important because it is responsible for generating the dynamic
behaviour which is internal to the system. But unfortunately,
the computation of the terms in the A-matrix requires
considerable time and effort. An analogue scheme of visual
representation of SD models is given below which helps in
easy computation of the A-matrix.

6. An Analogue Scheme of Visual Representation of SD
Models:

Causal loop diagrams, flow diagrams and influence diagrams

are various popular methods of visual representation of SD

models. Some criticisms levied against these representations

may be summarized below:

a) These diagrams do not portray the precise mathematical
relationships

b) These diagrams do not show the initial values of the levels

¢) It is difficult to identify the feedback loops due to the
presence of many lines intersecting one another.

Based on the analogue representation scheme in Control
Systems Theory a new diagram may be used with the help of a
few symbols. Table 1 gives the symbols and their implications.
These symbols are a modified and extended version of
symbols originally proposed by Rademaker (3).

The single-order SD model of § 3.1 is diagrammed and shown
in Fig. 3.
The analogue representation of a first order delay of  §3.2
is shown in Fig. 4.

Since third order delays are extensively used in practice and
since the outflow rate depends solely on the inside level stored



TABLE y(t)

TABLE 1

Inplications

x(t) = xlo) +[tI%[t] - s(t) dt

0

= %(t) = ©(t) - s(t)

x(o) is also given

x4(t) = xl[t) - xz(t)+x3[t3

y(t) = c*yzft}/ylitl

y(t) is a TABHL/TABLE
function of x(t)

Information is taken off the main

stream, r(t)

Z = MAX (x,y)
Z = MIN (x,y)
£ = CLIP(x,y,y,x)
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Figure 3: Analogue Representation of §3.1
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Figure 4: Analogue Representation of First-Order Delay
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Figure 5: Analogue Representation of §4
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in the delay, a short hand symbol may be retained for the
purpose. In fact Forrester’s original symbol may be retained.
For similar reasons Forrester’s original symbol for DELAYn,
SMOOTH, DLIFNn may also be retained.

The analogue representation of § 4 along the lines of the
suggested scheme is given in Fig. 5.

It may be observed from Fig. 5 that the flow proceeds from
right to left whenever a feedback occurs. Therefore, all the
loops are very distinct. The three loops in the model are very
obvious. It is also very easy to get various information such as
gains, and delays etc. in each loop as obtained by Coyle (6)
(page 211). It also overcomes the criticisms against the popular
visual representation of SD models.

It may be pointed out at this stage that the symbols represent
operations and arrows represent variables. The constants
associated with a ® — symbols define gains between two
variables associated with corresponding & — symbols. For
example gain between ASR and DINV equals WINVD and gain
between AOR and IPL equals (TMRBL/TABL), the negative
sign appearing here because of the presence of such a sign in
the sequence of arrows from AOR to IPL. Gain across a
smooth-operation is not obvious from the diagram. But it is
known that a smoothed level equation is equivalent to a first-
order delay represented by Eqn. (11) from which it is obvious
that the path gain across the smoothing operation is the
reciprocal of the smoothing time constant. For the same
reason, the path gain between inflow and outflow rates for a
first-order exponential delay also equals the reciprocal of the
delay constant. Similar statements cannot of course be made
about third-order delays since there exists three hidden state
variables.

It was earlier stated that it would be possible to compute
the entries in the A-matrix directly from such an analogue
scheme. For that purpose, the following definitions are made
considering a direct analogy between this form of representa-
tion and the signal flow graphs.

A Path between two state variables is a series of arrows from
head-to-tail without passing through any state variable.

Path gain (or transmittance) is the multiplication of all gains
along the path. Whenever negative signs appear on the path,
this must be considered as a gain of -1.

Equivalent gain (or transmittance) between two state variables
is given by sum of gains of all parallel paths existing between
the two state variables. This equals the corresponding entry

in the A-matrix,

Consider the transmittance between ASR and AOR. There are
two paths existing between the variables ASR and AOR.

Path gain of Path 1 = WINVD * |

TAI TAOR
Path gain of Path 2 = |
TAOR
so equivalent gain between ASR and AOR
WINVD 1 1 WINVD 1
= * = + 1) *

+
TAI TAOR TAOR ( TAI TAOR

which, of course, appears on the corresponding entry in the
A-matrix.

One may proceed in the similar fashion and verify that the
equivalent path gains between two state variables are in
fact the corresponding entries in the A-matrix. If there exists
no path between two state variables then the path gain equals
zero.

7.  Conclusion

It is shown in this paper that an SD model with linear relation-
ships can be transformed to the form of a vector-matrix
state differential equation, which forms the starting point in
a control theoretic analysis. The procedures to be followed
in the presence of nonlinearities are discussed in the
accompanying paper (4).
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