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INTRODUCTION

Broadly speaking, the essence of a system is its complex con-
nective structure and its dynamical behaviour. Many con-
ventional analyses, however, consider these fundamental
features in a restricted way, and, in so doing, they undermine
our ability to fully comprehend the system of interest, and,
perhaps more significantly, they reduce our ability to control
it in a meaningful way. Given particular interest in the com-
plex interconnections between a system’s sub-systems, for
example, it is somewhat surprising that techniques, such as
conventional multivariate statistical approaches founded on
constrained (often linear) functions (which are a special type
of relation), are frequently employed to analyse this charac-
teristic. Unfortunately, by their very nature, these taxonomic
procedures destroy much of the structure of interest. The
basic argument is that theoretical deductions may be as much
a result of the specific approach and representation applied as
of the system’s features. Specifically, attention is drawn to
the fact the employment of linear functions is inhibiting.

A related issue is the balance between mathematical tract-
ability and realism. Non-linearities in dynamical systems
engender analytical complications, and, therefore, it is often
deemed desirable to use linear approximations (see, for
example, Mohapatra (1980)). Whilst model simplification is
obviously an acceptable aim, it must be appreciated that the
presence of non-linearities, representing scale (dis-) economies,
realistic spatial interaction, and so on, is often the reason for
the complex behaviour of many systems. Thus, by restricting
analyses to linear relationships, much interesting complex
dynamical behaviour is no longer tenable.

This paper is primarily conceptual, introductory and specula-
tive. Recent developments in bifurcation and catastrophe
theory are mentioned, and particular attention is given to the
complementary nature of deterministic and stochastic
modelling. Following the work of Prigogine and his colleagues
in the field of physical chemistry (Nicolis and Prigogine,
1977). it is argued that stochastic fluctuations play a funda-
mental role in the self-organisation process at bifurcation (or
critical) points by determining the specific state to which a
system evolves — ‘order through fluctuation’; away from
criticality, system dynamics are determined by deterministic,
differential equations and stochastic fluctuations have little
effect. General implications for applied and theoretical work
are noted. In section two, it is shown that mathematics is
both a tool of analysis and a language of conceptualisation.
The discussion of multiple, steady-states found in non-linear
systems provides the foundation for a detailed consideration,
in section three, of the distinction between ‘classical’ stability
and structural stability. It is argued that stochastic elements
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are of paramount importance in the modelling of dynamical
systems, because they actually determine the particularly
trajectory that a system follows. A number of conceptual
issues are raised with regard to the modelling of dynamical
systems, and, in the final section, some general implications
for man’s role in system management are outlined.

(2) MATHEMATICAL REPRESENTATION

A commonly adopted convention is that a system’s state is
defined by a set of state variables, (x). with specified values.
These represent individual elements of a system, and their
relationship with each other are often given by suitable (linear
or non-linear) functions, The magnitude and nature of a
function’s impact is determined by their associated set of
parameters, More specifically, investigation of a dynamical
system involves an examination of the way a system evolves
over time, and, therefore, a description of system dynamics
must consider system states at various times, especially the
sequence of states. Formally, this can be represented by a set
of simultaneous differential equations,

= f(x,0) (1)

where x is the set of state variables and @ is the set of para-
meters, Analyses focus on the effect of changes in parameter
values over time on the system’s qualitative dynamical be-
haviour.

Particular attention is given to a system'’s steady-state, that is,
its time in dependent state. A steady-state is when

fata) = 0 (2)

For non-linear systems, determination of such a state is
usually analytically intractable, although numerical inte-
gration has been facilitated -by computer developments. It
now becomes clear why to disregard or approximate non-
linearities can destroy the recognition of inherent system
dynamics. Multiple steady-states are only found in non-linear
maodels, and their existence, indicating the possibility of more
than one future, is of fundamental significance in the con-
ceptualisation of system dynamics: linear systems have one
unique steady-state.

A simple model which illustrates the existence of multiple
steady-states is the logistic growth model, which is widely
used in demographic studies and ecosystem management. As
figure one illustrates, there is a saturation level (or carrying
capacity). For example, for a population x. the rate of growth
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Figure 1. Logistic growth
can be written as a non-linear, differential equation

dx
— = (g—cx)x (3)
dt

where g is the intrinsic growth rate (excluding carrying
capacity) and c relates to the effect of the carrying capacity;
specifically, it is the rate at which the addition of population
reduces its intrinsic growth rate. For a steady-state to occur,
that is when the population stop growing (or decreasing)

gx = ex® (4)
because

dx

s = D (5)

dt

This situation arises for two population values, x equal to zero
(extinction) and x equal to g/c (the saturation level).

(3) ‘CLASSICAL’ STABILITY AND STRUCTURAL

STABILITY

Given the existence of multiple steady-states, which state
occurs when? In the present context, it is important to dis-
tinguish between ‘classical’ stability and structural stability.
Classically, stability analysis was concerned with perturba-
tions to a system’s initial conditions or its external environ-
ment, whereas structural stability is concerned with pertur-
bations to a system’s structure itself, In both cases, analysis
focuses on whether system behaviour is altered by the dis-

turbances, although ‘classical’ stability analysis involves an
examination of trajectories in the neighbourhood of a steady-
state for one particular system and structural stability involves
an examination of trajectories for a set of systems which are
only slightly different. Attention here focuses on the concept
of structural stability, which is of central significance in the
recently developed and much discussed catastrophe theory.
Thom’s (1975) catastrophe theory demonstrates the important
relationship between structural stability and morphogenesis
(although bifurcation theory, which is not restricted to gradient
systems described by a potential function, is likely to have
wider applicability). It should be noted that catastrophe
theory is restricted in its description, because it only rep-
resents switches between steady-states of different dynamical
regimes, (although it is possible to incorporate ‘slow’ equations
(Zeeman, 1977)). Such instantaneous changes are termed
‘catastrophes’ (although no suggestion of disaster is neces-
sarily meant). In contrast, the principle of ‘order through
fluctuation’, which is described in the next section, provides
a mechanism by which particular state transitions can be
explained (and, in so doing, overcomes a major problem of
catastrophe theory). Stochastic fluctuations are the
mechanism for change.

A phase space representation of system behaviour is widely
used; a trajectory in the phase space plots the change over time
of a system from an arbitrary initial state. Stable steady-states
are termed ‘attractors’, and they have trajectories leading to
them; if a steady-state is unstable, trajectories leave them and
they are termed ‘repellors’. The area in phase space which
defines the set of possible initial states which are attracted to
a particular stable, steady-state is called the ‘domain of
attraction’. Basically, structural stability involves an analysis



of how domains of attraction, particularly their boundaries,
are fnodified by alterations in the value of a system’s para-
meters. Such alterations take place at so-called ‘critical’ para-
meter values. Elementary catastrophe theory involves a classi-
fication of the types of transition from being in the domain
of one steady-state to being in the domain of another.

Following Casti (1979, p.52), this is portrayed in figure two,

‘The point x initially lies in the domain of the attractor P.
Because of changes in the system dynamics, the domain of
attraction of P shrinks from I to II, while that of Q expands
from 1 to 2. The point x is now drawn toward Q rather
than P. Of course, the locations of P and Q themselves
depend upon the system structure, so the points in the
figure are actually regions containing P and Q. What is

important is that the regions of P and Q are disconnected’.

It is noted that such a phase space representation is not used
directly in catastrophe theory; instead, it gives (critical) para-
meter values which cause a change in the domain of attraction.
Such alterations of the boundaries of the specific domains
relate to the idea of system persistence, and this is discusse
in the section on planning implications. :

(4) INCORPORATION OF STOCHASTIC ELEMENTS
INTO A DETERMINISTIC FRAMEWORK

To date, the representation of system dynamics has been

within a wholly deterministic framework. However, as it has

already been demonstrated, no single, unique trajectory of

behaviour exists as a parameter value changes over time.

Bifurcating steady-state solutions for alterations in the value

Figure 2. Shifting domains of attraction
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(Source: Casti, 1979)
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Figure 3. Bifurcating steady-state solutions as a parameter changes

of a ?qrameter are shown in figure three; for a greater than
a mu tlple, multiple, steady-states exist. At present, however,
one is unable to specify the particular trajectory followed by
the system.

It is the stochastic fluctuations which determine the system’s
specific evolutionary path. Nicolis and Prigogine (1977)
schematically portray this complementary role of deter-
minism and fluctuations in system evolution as

FUNCTION Z > STRUCTURE

\ FLUCTUATIONS/

For example, a system’s function is described by differential
equations, its different behavioural regimes that are exhibited
arise from the structural instabilities inherent in the system,
and the fluctuations actually trigger the transitions between
states at critical points.

It can be suggested that the deterministic equations relate to
the mean value of ‘macro’ variables, and the stochastic
(‘micro’) elements are only of importance in the neighbour-
hood of a critical point. Indeed, given inherent variance in the

macroscopic description of the system, the fluctuations can be
conceptualised as endogenous local characteristics, and not as
exogenous inputs as in time-series analysis.

In summary, it is desirable to incorporate both the micro- and
macro-characteristics in modelling system dynamics. System
description is at a macro level, and, therefore, it possesses a
mean (average) perspective, but the micro-level variations are
important forces determining system behaviour. This con-
ceptual framework presents an opportunity to generate new
theoretical insights from the modelling of dynamical systems.
Moreover, it has significant implications for practical work,
particularly planning and man’s control.

(5) MAN’S ROLE IN SYSTEM CONTROL

For control to have meaning, there must be explicitly stated
goals and the current preoccupation with efficiency and
optimal solutions commonly involves active control to either
preserve a given structure or change a system into a desirable
structure. However, with regard to the modifications of
domains of attraction by changing parameter values (specifi-
cally, the ideas of a system’s persistence at a particular state),
it can be suggested that such actions may produce transient
benefits at the cost of a contraction of the specific state’s
domain of stability. Since the mid-1960’s, for instance, a
number of socio-economic indicators such as crime, ‘poverty’,
unemployment and inflation levels could arguably be inter-



preted as indication that a temporary improvement in the
quality of life has been achieved at the expense of an associ-
ated reduction in the stability of the regime within which such
behaviour can persist. That is, a system’s (long-term) per-
sistence capabilities can actually be undermined . Consequently,
there is an increased possibility of sudden, potentially
disastrous, irreversible transitions resulting from apparently
insignificant decisions. There is, therefore, an indication of a
need to consider alternative courses of action.

At worst, planning strategies must not reduce a system’s
ability to counter perturbations. Otherwise, at some future
time, some fluctuations, which could formerly be absorbed
without resulting in a sudden change in behaviour, will actually
trigger a transition between regimes. It is suggested that any
system management should adopt a perspective founded on
persistence rather than on stability; that is, there should be a
shift away from the current focus on steady-states to the
broader features of attractor domains (see also Holling (1976)).

Thus, there is an implicit suggestion that planning cannot in-
definitely constrain development processes within a given
structure. It has already been postulated that change is in-
evitable (even if man desires otherwise), and a further
corollary is that such evolutionary processes should be
identified and appreciated. Planning in such an evolutionary
context will result in greater uncertainty because of an in-
crease in potential futures. Perhaps man’s role should be
thought of as one of assisting desirable evolutionary processes.
Obviously, transitions to new regimes will eventually occur,
and, although it can be argued that a laissez-faire approach
relying on invisible hands is more appropriate than one
founded on stability, planners could act as catalysts in the
evolution of different dynamical behaviour. Such notions
have many parallels with the Baconian philosophy that man
can master nature only by obeying her. Accordingly, the
common thesis that man’s relationship with nature is an ever-
increasing one of control and ascendency must be carefully
interpreted. No proposal, however, is made to reduce man’s
intervention in a system’s evolution — far from it, the ap-
proach may require increased control. Fundamentally, the
implications of an emphasis on persistence must be appreci-
ated — ultimately, man’s power is restricted, although it is
potentially crucial.

An adoption of such an approach does not mean that present-
day features of the planning process will not remain of signifi-
cance. For example, clearly, planning must be continuous and
not exhibit discontinuities associated with the system’s be-

haviour. The recognition of sudden transitions between states
raises a fundamental problem with respect to current fore-
casting methods, which are usually trend extrapolations that
do not take account of the possibility of discontinuous
behaviour and evolution to new structures. The potentiality
of alternative futures presents both a philosophical and
methodological challenge for researchers interested in system
dynamics.

In conclusion, the role of man is conceptualised in conjunction
with a system’s inherent dynamics, assisting, rather than
impairing, endogenous organising mechanisms. Moreover,
uncertainty is explicitly appreciated, and future options are
left open. In the end, the success of this open-ended planning
process is dependent upon the political envitonment in which
it functions and the theory employed.

(6) CONCLUSION

The basic argument is that recent work on structural stability
raises a number of issues related to the modelling of system
dynamics. It is no longer necessary nor desirable to be con-
strained by linear functions; complex, dynamical behaviour
resulting from more realistic, non-linear functions is now
comprehended much more. Whilst initial advance is more
likely to be in conceptual, than in operational, terms (as with
system dynamics in general), work also needs to be under-
taken to operationalise the mathematical models. In the
immediate future, one avenue to pursue is a re-examination
of existing simulation models, because it is likely that enhanced
interpretation and even new insights will be forthcoming if
couched in terms of structural stability and critical points.
Moreover, a fruitful and related research topic would be to
examine the variety of results derived for the same model
with different sets of random fluctuations.
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