COMPLEX BEHAVIOUR IN SYSTEM DYNAMICS MODELS

Richard H. Day, Modelling Research Group, Department of Economics, University of Southern California

ABSTRACT

This paper shows how irregular, more-or-less random fluctua-
tions arise in deterministic economic models. The heart of the
matter lies in the intrinsic properties of nonlinear feedback,
a phenomenon emphasized by Forrester as causing funda-
mental difficulties in conventional dynamic analysis.

1. OBSERVED IRREGULARITY

In spite of progress in theory, econometrics, and computer
simulation, the prospects for accurate prediction of signi-
ficant economic variables — beyond a few months in advance
-~ seem as remote now as ever. Exasperating irregularity is
exhibited by familar monetary variables often charted on the
financial pages such as the prime rate, the money supply,
and the Commerce Department’s index of 500 stock prices.
Although the last of these is widely regarded as exhibiting
properties of a random walk, the first two are generally
thought to be determined by monetary policy and systematic
economic forces. Obviously, however, changes in money
supply are erratic and, while movements in the prime rate
could be closely approximated by a smooth curve, the recent
history is irregular and characterized by cusp-like reversals
at uneven intervals. ‘‘Real” variables such as unemployment,
industrial output, aggregate capacity, and business inventories
likewise show an unhappy tendency toward wandering
fluctuations.

It has been customary to attribute such behavior to random,
exogenous ‘“‘disturbances” or ‘‘shocks” that continually
perturb system behavior from a regular path with the result
that system states are erratic and more or less unpredictable.
An ulternative explanation is that unpredictable irregularity
is generated endogenously, without any intervention from
exogenously determined stochastic elements, by the inter-
play of technology, preferences and behavioral rules alone.
The latter view is surely the more satisfactory one on
scientific grounds for it is precisely the task of theory to
show how the character of observed events is intrinsic to the
process generating phenomena. It is this endogenously
generated, intrinsic irregularity that is the subject of this
paper.

2. SIMULATED IRREGULARITY

2.1 The Generalized Cobweb Model

Irregularities of the type we are talking about began to arise
in computer simulation studies of deterministic recursive
programming models in the early sixties. nearly two decades
ago. Those models were developed for the purpose of
explaining and projecting behavior of industrial sectors,
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agricultural regions, or individual firms (Day [1963], Day
and Cigno [1978] ).

An example chosen here for illustrative purposes is the
Generalized Cobweb Model described by Muller and Day
(1978). The central assumptions of this model are (1)
producers maximize an anticipated, discounted profit stream
over a multi-period horizon subject to various constraints;
(2) the constraints include the usual technical restrictions
on the use of land, labor, and physical capital, “‘adaptive’”
behavioral constraints representing “local search™ and caution
in response to current opportunities and a financial constraint
limiting financial capital to “reinvestment income’ or savings
and externally constrained borrowing;  (3) producers
anticipate prices according to an adaptive expectations
forecast, and (4) realized “‘market” prices are generated by
a deterministic demand function. The complete model
represents behavior by a rolling-plan with market feedback.
It was designed to simulate farm production and investment
behavior and market price and sales behavior for typical
agricultural commodities.

In order to narrow the scope of the investigation the para-
meters were chosen to reflect cost and demand conditions
for hog production in West Germany. Deterministic runs of
the model were obtained for various conditions of demand
(e.g. with and without a trend component) and for varying
estimates of the coefficients pertaining to behavior under
uncertainty. In Figure 1 the results of two such runs are
reproduced.  Of particular interest is the trajectory of
investment in buildings, which shows a pronounced fluctua-
tion with no tendency of converging to an oscillation of
fixed period. Indeed, the apparently quite stable pattern in
Figure 1a that is repeated three times between period 5 and
period 20, suggesting a five-period cycle, is broken there-
after. Through the fiftieth iteration no similar regularity has
yet appeared. In Figure 1b, where an exponential demand
shifter has been introduced, the amplitude and the irregu-
larity of the fluctuations seem more pronounced.

These results suggest that agricultural commodities might very
well exhibit quite irregular oscillations in output and prices
even in the absence of more or less random shocks from
weather and political events. Similar results have been
obtained for closed recursive programming models of other
sectors. A recent cxample is the “EDEM” model of a proto-
typical regulated electric utility. See Day (1982). There,
erratic substitutions between a capital intensive and a capital
saving technique for generating electric power are shown to
emerge after a long period of efficacious growth.
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(a) Stationary Demand

Prices

(b) Exponential Demand Shifter

Simulations of the Generalized Cobweb Model
Muller and Day (1978, pp. 242-247)

Figure 1:

2.2 A Reductionist Approach: The Robertson-Williams
Cobweb Model
The characteristics of the Generalized Cobweb Model respon-
sible for fluctuations in prices, output and investment are:
(1) the presence of a financial constraint that depends on
lagged revenues, (2) the dependence of revenue on a demand
function with variable elasticity, and (3) the independence
of pricing from the production and investment decisions:
“market” prices are determined by a purely competitive
market clearing process. After a period of growth (perhaps),
output levels eventually reach the inelastic portion of the
demand curve; consequently, revenues fall. This reduces
working capital and borrowing ability for the subsequent
period. Production and/or investment must be reduced or

a shift to money-saving production and investment effected.
Later, because market supplies are reduced, prices increase
and revenues recover. All this happens the way it does because
of the nonlinear feedback involved in the working capital
equation. By stripping away all of the features of the
generalized Cobweb model except the three characteristics
that cause cycles, we arrive at a single equation model that
proves to be quite tractable and for which precise analytical
and constructive conditions for erratic behavior can be given.
The basic assumption is that current expenditures come from
previous income, the so-called Robertsonian Lag. In the case
of the firm, a sales maximizing hypothesis (Baumo [1959] )
coupled with a financial constraint that requires all production
costs to be limited to previous sales revenues leads to such an
equation (Day [ 1967], Williams [1967] ).

Assuming that all firms in a purely competitive industry
possess identical unit costs, total output obeys the difference
equation: Present Total Cost = cX; , | = Lagged Total
Revenues =X, D(Xt), or

(1) X4 =X DXfe

in which c is the constant unit cost of production for each
firm and D(*) is the inverse industry demand curve.

Given the simplifications we have imposed, the dynamics of
industry output must depend on unit cost and on the para-
meters of demand. This is most easily seen by considering
the special case in which D(X) =a - bX so that (1) becomes

(2) X 41 =X;@-bXpfe.

Setting x = bX/a we obtain the difference equation

(B) x4 1 =mx(l -x)),

where m = afc. The parameter “m” has a simple intuitive
meaning: it is the extent of the market ““a’ divided by an
“efficiency index™ we could say that “m” is the ‘‘extent of
the market”” measured in “cost efficiency” units. Elsewhere
I have shown how industry behavior becomes increasingly
complex as m increases (Day [1982b] ). Just how complex
is shown in Figure 2. Diagram (a) shows a two-period oscilla-
tion that appears to jump to a seven-period cycle. The latter
reproduces itself fifteen times only to wander away in a quite
irregular pattern. Diagram (b) develops extreme fluctuations
with periods of growth followed by cycles and occasional
plunges at erratic intervals that nearly eliminate the industry
altogether.

As one searches through these graphs, instances can be found
in which the successors of two visually identical but non-
adjacent points, such as those positive values very close to
zero, depart rapidly in value. To put it another way the
histories following two visually identical points are not
identical!

At the time (circa 1963-1965) it seemed to me that such
irregularities would give way eventually to at least quasi-
periodic motion. (Of course, on a digital computer with finite
memory periodic cycles must occur but that is an artifact of
computer design). The thought that histories might not repeat
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Figure 2: Simulations of the Robertson-Williams Cobweb Model

any fixed pattern — even approximately — did not occur to
me then.

3. THE WORK OF LORENZ: NON-PERIODIC FLOW,
INSTABILITY AND STRANGE ATTRACTORS
In an independent line of work, however, exactly that
possibility was discovered and investigated in considerable
depth. Indeed, equation (3) had been arrived at already by
a quite different route. Edward Lorenz, in a brilliant series
of papers (Lorenz [1963a], [1963b], [1964a], [1964b] ),
developed a theory of “deterministic, nonperiodic flow”
on the basis of differential equations designed to represent
the properties of forced, dissipative, hydrodynamical systems,
and which was motivated by the desire to understand salient
features of the weather, in particular, its apparent property of
never repeating its past history exactly. A set of differential
equations was first investigated. Next, Saltzman’s 3rd order
special case (the “equations of convection’) were examined
for specific parameter values. They were shown to exhibit
the phenomen of interest. Then, in a still bolder reduction,
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Lorenz (1964) found in equation
analog of the general “‘forced dissipative system’ that
produced unstable, erratic fluctuations of the kind shown
in Figure 2.

3.1 Forced, dissipative flow
Lorenz began with a brief description of a reductionist
modelling philosophy.

A closed hydrodynamical system of finite mass may
ostensibly be treated mathematically as a finite collec-
tion of molecules — usually a very large finite collection
— in which case the governing laws are expressible as a
finite set of ordinary differential equations. These
equations are generally highly intractable, and the set
of molecules is usually approximated by a continuous
distribution of mass. The governing laws are then
expressed as a set of partial differential equations,
containing such quantities as velocity, density, and
pressure as dependent variables.

(3) the simplest possible‘



It is sometimes possible to obtain particular solutions
of these equations analytically, especially when the
solutions are periodic or invariant with time, and,
indeed, much work has been devoted to obtaining such
- solutions by one scheme or another. Ordinarily, how-
ever, nonperiodic solutions cannot readily be determined
except by numerical procedures. Such procedures
involve replacing the continuous variables by a new
finite set of functions of time, which may perhaps be the
values of the continuous variables at a chosen grid of
points, or the coefficients in the expansions of these
variables in series of orthogonal functions. The
governing laws then become a finite set of ordinary
differential equations again, although a far simpler set
than the one which governs individual molecular
motions. Lorenz (1963a, p.78-79).

He then went on to describe a general class of ordinary
differential equations that would be appropriate for modelling
hydrodynamic phenomena. These were the equations of
“forced, dissipative flow” typified by the quadratic differen-
tial equations

@) X = Faiogsy - Zy Fop bi k=1,
in which the linear term represents the dissipative flow and
the constant term represents the forcing action of, let us say,
a constant inflow of energy or resources. The first term
represents the nonlinear interaction among the state variables
and in the absence of forcing and dissipation is assumed to
allow for bounded orbits on an ellipsoid.

The equations of forced, dissipative systems were also givena
central place in Prigogines’s (1962) thermodynamics of irre-
versible processes and since developed into a general theory of
self-organizing systems (Nicolis and Prigogine [1977]} ). The
application of these ideas to urban-regional dynamics by Allen
and Sanglier (1979) is briefly suggestive of the complex
dynamics about which we are talking.

Lorenz proved a few basic results on existence and stability.
More important, he emphasized that nonperiodic solutions
of (4), should they exist, would have to be unstable.

The result has far-reaching consequences when the
system being considered is an observable nonperiodic
system whose future state we may desire to predict.
It implies that two states differing by imperceptible
amounts may eventually evolve into two considerably
different states. If, then, there is any error whatever
in observing the present state — and in any real system
such errors seem inevitable — an acceptable prediction
of an instantaneous state in the distant future may well
be impossible. Lorenz (1963a, p.81).

3.2 Lorenz’s Chaos Equations

Proving the existence of nonperiodic solutions, however, is
not an easy task. In order to make progress Lorenz considered
a special case of (4) derived by a series of transformations
from Saltzman’s equations of convection. These equations,
which now usually bear Lorenz’s name in the mathematical
work that they precipitated, have the form,

X= -ox + Oy
(5) y=-xz+rx-y
z= Xy -bz

The causal lags and dynamo flow diagrams for the Lorenz
equations are shown in Figures 3 and 4 respectively. The
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Figure 3: Causal Loop Diagram for the Lorenz Equations
Nonlinearity enters through the interaction term xy which
effects state variables y and z through feedback.

Figure 4: Dynamo Flow Diagram for the Lorenz Equations
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numerical integrations of (5) for parameter values o = 10,
r =28 and b = 8/3 led to startling results. Figure 5 for
example taken from Lorenz’s original paper shows the
calculated trajectory for y as a function of time for the first
1000 numerical iterations of the approximating difference
equations.
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Figure 5: A Trajectory of Y for the Lorenz Equations
Source: Lorenz (1964a, p.85)

Figure 6, which is reproduced from an expository article by
David Ruelle (1980), is a computer drawn, two dimensional
perspective of the solution from which Figure 5 was obtained.
The complicated pattern of reversing spirals already well
understood by Lorenz is beautifully illustrated.

Figure 6: The Lorenz Attractor, Source: Ruelle (1980, p.133)
after a computer drawing by Oscar Lanford

33 Rosder’s Chaos Equation
A considerable amount of analytical and numerical work has

since been performed on Lorenz’s equations or on close
relatives of them. Rossler (1976), for example, considered
the set of equations
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x= -y-z
(6) y= x+ay
z=xz -cz+b

Starting with initial values at (1, 1, 1) and using parameters
a = .55, b =2 and ¢ = 4 he obtained the computer-drawn
stereoscopic diagram shown in Figure 7. The complex
pattern he called ““‘Screw Chaos”.
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Figure 7: Stereoscopic Drawing of “‘Screw’” Chaos
Source: Rossler (1976, p.1668)

3.4 Strange Attractors and Instability

The set of points ultimately visited, or approached
asymptotically by a dynamical system is called an attractor.
Attractors like those discovered by Lorenz are called strange,
a term coined by Ruelle and Takens (1971). Although quite
a lot is now known about these attactors, their complexity
is still a cause for wonder.

Certainly, they contain a moral of great importance and long
emphasized by practitioners of system dynamics, namely,
that nonlinear feedback systems are far richer than linear ones
and that an understanding of future behavior of such systems
must somehow be obtained from a description and analysis
of structure; inference of future behavior based on past
observation, especially of short time-series of observations
made at discrete intervals, can not be relied on.

4. IRREGULAR ECONOMIC GROWTH CYCLES

4.1 Discrete Time Again

So far as I know no economic models of continuous time
chaos have as yet been developed. It seems to me clear,
however, that they soon will be. This conjecture is based on
the intimate relationship between discrete and continuous
time dynamics that has characterized the development of the
theory presented so far. This intimate relationship was
brought out in the beginning in Lorenz’s original work. Thus,
Lorenz, in an attempt to illustrate deterministic, dynamical
irregularity in the simplest possible way observed.

. the exact integration of a system of differential
equations over a chosen interval of time determines a
system of difference relations which is exactly equiva-
lent to the original equations. When the original equa-
tions are non-linear, the equivalent difference equations
generally cannot be written in finite form in terms of
familiar analytic functions. The existence of the
difference equations is assured, however, by the
existence of solutions of the differential equations.



We therefore lose no generality, in choosing an
arbitrary system of equations to illustrate the problem
of deducing the climate, if we choose a system of
difference equations instead of differential equations.
The alternative methods of attack are still available,
and they still possess their distinctive characteristics.

In the interests of economy, we shall seek the simplest
possible system of nonlinear difference equations . . .
Lorenz (1964a, p3).

The equation Lorenz chose as the simplest was equivalent
under a linear transformation to equation (3) which I arrived
at in an analogous way from the Robertson-Williams Cobweb
Model. This equation has the same type of quadratic
nonlinearity possessed by the continuous time equations of
forced dissipative flow (5) of which Lorenz’s and Rosslers
equations are examples, and because the equation is discrete,
the chaos phenomenon emerges, as we have already seen in
Figure 2.

4.2 The Li-Yorke Theorem

Difference equations are examples of “iterated maps’ which
can also be obtained from differential equations by
considering the solutions of the latter at discrete (say “unit”)
intervals of time or at points where they intersect a transversal
plane (Poincare section). Their study is therefore fundamental
to the analysis of dynamical systems of continuous or discrete
time as shown by Smale (1967). In 1975 Li and Yorke used
Smale’s famous ‘“horseshoe” technique to derive sufficient
nonlinearity conditions for the existence of irregular trajec-
tories in dynamic models.

Consider a real-valued, continuous function 6 that depends on
a vector of parameters, say m, that maps an interval J into
itself. Such a function generates a difference equation

) Xt+l=6(xt;ﬂ)Ee(Xt),

whose behavior depends on the parameters of n. If for some
value of these parameters there exists a point in J, say x°, such
that

®) 6 (x°)<x° <8 (x°) <62 (x°),

where 81 (x) =6 (x), 02 (x) =0 (0 (x) ), and 6”°*l(x) =
8(6™(x) ), then Liand York showed that

A.  there exist cycles of every order in J. (That is, for every
n,n=1,2,3,..., there exist points in J satisfying x =

6" (x)).)

B. there exists an uncountable set S in J such that all
trajectories with initial conditions in S remain in S and
B1. every trajectory in S wanders arbitrarily close to
every other one,

B2. no matter how close two distinct trajectories in S
may come to each other, they must eventually wander
away,

B3. every trajectory in S wanders away from a cycle of
any order in J, however close it may approximate one
for a time.

The functions 6" are the “‘iterates” of © and the condition (8)
may be thought of as a sufficient nonlinearity condition.

In Figure 8 a point x of the theorem is a point like “‘a”” which

maps into ‘b which maps into “c”. These successive
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Figure 8: The Li-Yorke Sufficient Overshoot Conditions

increases are followed by the third iterate of “‘a’" that over-
shoots the equilibrium or fixpoint X and falls to or below “a”.
In this example points in the set B map into the zero fix-point.
The sets A and A’ map into B and by similar construction a
doubly infinite sequence of intervals can be found mapping
into zero. Yet, the chaos theorem is satisfied: sandwiched
in among these intervals exist cycles of every order and an
uncountable, scrambled set of chaotic trajectories more or
less like the ones shown in Figure 3!

The proof provided by Li and Yorke is of considerable interest
since it helps provide an intuitive feel for how complex
behavior can arise and because it can be readily extended to
the case of n-variable difference equations and to set-valued
dynamical systems of the kind arising in the simulation models
described in Section 2. At this point we want to show how
the theorem can be used to establish the existence of chaotic
trajectories for simple recursive economies such as our
Robinson-Williams Cobweb model.

Elsewhere, 1 have shown how, as the extent of the market
(represented by the parameter m in equation (3) ) increases,
the overshoot condition eventually is satisfied. One can easily
get the idea by observing that the maximizer of (3) which is
x* = % is unchanged as m increases. The maximum, however,
x** = m/4, does increase with m. Then the “overshoot”
f(x**) = m2 (4-m)/16 must be less than the preimage of x* as
m gets close enough to 4. Actually, the overshoot is satisfied
for m = 3.86+ and for high enough odd iterates the overshoot
parameter approaches 3.57+ which is the established thresh-
hold for chaos for equation (3).
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43 A Neo<Classical Growth Model

In another study Day (1982) I have applied the Li-Yorke
theorem to a nonlinear discrete-time analog of the Tinbergen-
Solow-Swan model of economic growth. The latter boils
down to the equation

(9) kg4 =min+p)ky sk )}/ (1+))

where s(k) is the propensity to save, f (k) is the per capita
production function, p a bound on the rate of investment and
A the net population growth rate. The nonlinearity required
to produce the chaos generating overshoot can be induced by
nonlinearity in either s(k) or f(k). I won’t reproduce these
results here.

However, a simulation of (9) is instructive for it shows how
irregular growth cycles somewhat like those observed in GNP
can be generated by the simplest possible discrete-time model.
This is done in Figure 9.
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Figure 9: Irregular Growth Cycles in GNP: The ‘‘Neoclassical
Growth Model”’, Source: Day (1982)

5. CONCLUDING OBSERVATIONS

Emphasized throughout our discussion has been the chaos
generating property of nonlinear difference and differential
equations. The kind of nonlinearity required for the emer-
gence of such irregular fluctuations is present in the simplest
micro- or macro-economic models using discrete time. But
these nonlinearities are analogous to those that arise in con-
tinuous-time models of turbulence in forced, dissipative
systems of dimension 3 or more. It seems likely, therefore,
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