_A GENERIC SYSTEM DYNAMICS MODEL OF SOFTWARE PROJECT MANAGEMENT

BY

John D. W. Morecroft

Tarek K. Abdel~Hamid

Massachusetts Institute of Technology
Sloan School of Managemént'

Cambridge, Massachusetts 02139

To be presented at the 1983 International System
Dynamics Conference, Chestnut Hill, Massachusetts,

July 27-30, 1983

237

I, INTRODUCTION: THE PROBLEM

The past two decades have witnessed the development of a
large number of software engineering tools and techniques for
improving the production of cémpﬁter software systems. As a
result of these developments, today's software project ménageré
have at their disposal an abundance of sophisticated tools that
are potentially useful in helping them increase their
effectiveness. And the number of these 'techniques continues to

increase each year.

Still, "most software projects fail" (McClure, 1981). Many
organizations are £finding that their people are still developing
the same expensive, bug-ridden, unmaintainable software that they
were developing before the new software engineering tools (e.g.,

structured programming) were introduced (Yourdon, 1879).

A question that has frequently been raised (and appropriately

so0) is: who is to blame? Does the fault lie in the tools

themselves, or are the tool-users, especially management, the real

culprit?

In the literature, there is an abundance of arguments on both
sides of the issue. For example, Thayer (1979) argued that the
problems we are facing in software produétion are, largely, due to
a lack of effective tools (especially) in the area of software
project managemeht.' On the other hand, Yourdon (1979) sees
management as the real "villain," It is his opinion that
“...vmanagement is to blame for the failure of the structured
revolution." He feels that, in most companies, management did a
poor job in selling the new technigues, in providing the necessary
‘training, and in general in providing the needed support aﬁd
follow-through. And as a result, some argue, most of the software
engineering tools, techniques, and methodologies that have been
available for practical use for a long time, laﬁguish on the shelf

like a good product which does not sell.

While there is certainly some validity in both arguments, we

feel that the "true" answer lies somewhat between the two.

What we feel is still missing‘ and much needed is not
necessarily a set of new specific software engineering tools, nor
a new breed of "super—éapable" software project managers (which is
probably infeasible anyway), but rather a much needed model,
perspective if you will, of software development project
management, that can help bo;h managers and researchers to better

decide when, where, and how to use (or not use) the ever

238

increasing number of software engineering tools and techniques
that are already available., 1It is interesting that (even) more
than a decade ago Aaron (1970) commented that "We ran into
problems because we didn't know how to manage what we had, not

because we lacked the techniques themselves,"

Today's software development project managers are faced with
a general situation that has been continuously becoming more
complex (Singer, 1982). Their software development organizations
develop new products, offer new services, incorporate additional
technologies, and have a more heterogeneous workforce. This
complexity often makes it ylessband less}obvious how healthy or
sick their organizations actually ﬁre. It also makes it less
obvious how important various known problems are, and what the
second- and third-order'conseqqences of some set of actions ---

:

such as the use of some software engineering tool --- will be.

The consequences of this situation are predictable (Kotter,

.1978):

Since they lack confidence in their assessment of the risks
and benefits of organizational improvement techniques,
managers gquite often choose not to use them. As a result,
many potentially useful technigues are seriously
underutilized. Even when they are used, they are sometimes
used inappropriately. Managers select the wrong techniques,
or 'use them at the wrong time or in the wrong way. Then,
when their expectations are not fulfilled, they tend to
become even less willing to experiment with organizational
improvement tools,

Our objective in this research effort is to provide both

software development managers and researchers with a useful way of

thinking about organizational improvement issues. Our aim is to
develop an integrative model of software project management that
can help them answer the difficult’questions they need to raise
Qhen assessing organizational health, selecting improvement tools
(from the many that are already available), and implementing their

choices.

I11. AN INTEGRATIVE SYSTEM DYNAMICS COMPUTER MODELING
APPROACH OF SOFTWARE PROJECT MANAGEMENT

In a special issue of the IEEE Transactions on Software

Engineering on Project Management, Merwin (1978) asserted that:

What is still needed is the overall management fabric which

239

allows the senior project manager to understand and lead

major data processing development efforts.

At MIT's Center for Information Systems Research (CISR), we
are currently engaged in a research project to develop such an
"overall management fabric." Specifically, our objective is to

develop an integrative system dynamics computer model of software

'deveiopment project management. Such a model (we feel) would be

helpful to software development managers and researchers in

handling the ever increasing complexities of software production,
and thereby improve their abilities in identifying more accurately
both their more important problems, as well as the more effective

solutions to those problems.

In the remainder of this section, we would like to describe

three characteristic "features" of our model, which differentiate

our modeling approach from that of many others in the area of
software engineering. The three characteristic features being:
(1) it is an integrative model; (2) it is a computer model; and

(3) it is a system dynamics model.

I1.1. Why an Integfative Model:

The integrative feature of our model should help software
project managers in two important ways. First, it should help
them diagnose more accurately what is causing and what has lead to
whatever problems they have identified. It would do that,
primarily, by T"alerting"™ managers to all the relevant facets of

software production e.g., human as well as technological,

Because "interactions and interdependencies ére common in all
social systems, and are major complicating factors whiéh
neéessitate an overall system concept" (Cle;and and King, 1975),
one of the major difficulties facing both students of
organizations and managers trying to improve their functioning is

the lack of such overview models (Schein, 1980).

Many studies have indicated that managers often deal with the
problems they encounter in terms of mental models that do not
necessarily include all the elements or aspects of the problematic
situation. Technically trained managers, in particular, tend to
underestimate the influences of their internal social systems on

organizational performance (Kotter, 1978). Qohsider, for example,

240

the problem of achieving software reliability. By explicitly
incorporating the managerial functions of planning and staffing
together with the technical proceéses of software developmeﬁt
(e.g., designing, coding, ... etc.) in an integrative model, a
manager is "prompted" to investigate not ohly the technical issues
of software reliability, but also the implications of:

* Pressures to begin coding before the design is completed

because of tight schedules.

* Insufficient emphasis on programmer education and training.,

* Poor matching of programmers' abilities with job

assignments.

(In a study reported by Myers (1976), the above three factoré
contributed more to the generation of sericus software errors than-
did any weaknesses in the design, implementation, or testing

processes.)

The second way in which the integrative feature of our model

-would be helpful 1is in providing managers with a rational basis

for identifying feasible "improvement interventions," and for

assessing their probable impact once implemented.

The chain of effects in going from a particular managerial
interveﬁtion (e.g., hiring more people) to immediate conseguences
then to second- and third-order consequences and newly created
problems is oné of the pervasive characteristics of modern sociéi

systems. Quite literally, in such systems everything depends on

everything else (Cleland and King, 1975). That is why, many
researches assert that overview models can be major aids to
managers who are trying to iﬁprove their organizations'

effectiveness (Schein, 1980).

For example, - the software project . manager who is
contemplating hiriﬂg more people to speed up a late project, would
be ‘"prompted" by our integrative model to investigate the dynamic
implications of such a decision on things such as:

* the human communication overhead, and the effect of that on

productivity, and

* the time and effort allocated by the experienced énd

productive team members to train new personnel.

11.2, Why a Computer Model
' Using an integrative model merely to "alert" managers to all
the important aspects of a problem, while clearly useful and
essential, is definitely not enough. Because such a model will
undoubtedly contain a large number of components with a complex
network of interrelationships, we mus£ in addition provide an
effective means to determine both accurately and efficiently the
dynamic behavior'impliéd by such component interactions.
Since the ultimate aim is to explain and predict theé behavior
of organizations, not of individual components, it is
necessary. to have a method which allows us to construct and

manipulate a total organization. Computer simulation
- techniques provide one such method. (Cohen and Cyert, 1963)

241
10

Experience from working with managers in many environments
indicates that they are generally able to specify the detailed
relationships and interactions _among managerial policies;
resources, and performance, However, managers are usually unable
to determine accurately the dynamic behavior implied by these
rélationships. Human intuition, studies have shown, is illsuited
for calculating the consequences of a large number of interactions

over time (Richardson and Pugh, 1981).

Unlike a mental model, a computer simulation model can

reliably and efficiently trace through time the implications of a
messy maze of interactions. And it can do that without stumbling
over phraseology, emotional bias, or gaps in intuition (Richardsoﬂ

and Pugh, 1981).

By utilizing computer simulation techniques in this research
effort we, thus, combine the strengths of the manager with the

strengths of the computer. The manager aids by specifying

.relationships within the software project management system, the

computer then calculates the dynamic consequences of these

relationships.

I11.3., Why a System Dynamics Model

System dynamics is the application of feedback control
systems principles and techniques to managerial and organizational

problems (Roberts, 1981).

11

It is pertinent that we think in terms of feedback loops
because (Weick, 1879):

The cause-effect relationships that exist in organizations
are dense and often circular. Sometimes these causal
circuits cancel the influences of one variable on another,
and sometimes they amplify the effects of one variable on
another. It 1is the network of causal relationships that
impose many of the controls in organizations and that
stabilize or disrupt the organization. It is the patterns of
these causal . 1inks that account for much of what happens in
organizations. Though not directly visible, these causal
patterns account for more of what happens in organizations
than do some of the more visible elements such as machinery,
timeclocks, ...

A point which is important to the application, in particular,
of deviation~amplifying feedback (DAF) to management, concerns the

distinction between (1) the initial event (from outside a 1loop)

which starts the deviation amplifying process in motion, and (2).

the dynamics of the feedback process which perpetuates it. While
the initial event is important in determining the direction of the
subsequent deviation amplification, the feedback process is more

important to an understanding of the system (Ashton, 1976). The

initial event sets in motion a cumulative process which can have
final effects guite out of proportion to the magnitude of the
original push. The push might even be-withdrawn after a time, and
still a permanent change will remain or even the process of change
will continue without a new balance in sight. A further problem
is that, after some period of time has elapsed, it may be
difficult, if not impossible, to discover the initial event. &An
interesting example of this has been provided by Wender (1968):
ee. @ fat‘ and pimply adolescent may withdraw in

embarrassement and fail to acquire social skills; in
adulthood, acne and obesity may have ’‘disappeared but low

12

self-esteem, withdrawal, and social ineptitude may remain.
Social withdrawal and low self esteem are apt to stay fixed
because the DAF chain now operates: social ineptitude leads
to rejection, which leads to lowered self-esteem, greater
withdrawal, less social experience, and greater ineptitude,
What has initiated the problem is no longer sustaining it. A
knowledge of the problem's origin would not be expected to
alter the currently operative loop unless such insight served
to motivate behavioral change
Finding the initial event (acne and obesity) may have less
usefulness than understanding the current sustaining feedback
mechanism, Furthermore, in some instances the initial event
may have left no traces of 1its existence and may be
undiscoverable.

It is no wonder, then, that "most mangers get into trouble
because they forget to think in circles. I mean this literally.
Managerial problems pefsist because managers continue to believe
that there are such things as unilateral causation, independent

and dependent variables, origins, and terminations" (Weick, 1979).

242

13

III. MODEL STRUCTURE

in an empirical investigation of the objectives and
constraints of EDP departments in various industries, Hallam
(1975) found a high degree of agreement among all types of EDP
departments studied regarding goals and constraints. And based on
the findings of his study, Hallam then concluded that:

The primary beneficiary of the description here of EDP goals

and constraints is the model builder interested in modeling

the EDP management process, The agreement found among all

types of EDP departments regarding goals and constraints

should encourage model builders, since it indicates that a

general EDP department model should .have a widespread
applicability.)

While encouraged by these results, we, however, needed to be
cautious. Since our aim was to devélop a generic model, not of
the management of an EDP department, but , rather, of the
management of a software project, we knew that the
generalizability of our model could not cross project-type

boundaries.

Recent research findings in software engineering indicate

243

14

that there are several modes of software development, and that
there are significant differences between these modes. For
example, "These software developmen£ modes have cost—estimatiné
relationships. which are similar in form, but which yield
significantly different cost estimates for software products .of

the same size" (Boehm, 1981).

Boehm identified two main modes, and labelled them the
"organic mode"” and the "embedded mode." The most common mode of
software development is the organié mode: the small-to-medium
size product developed in an in-house, familiar, software
development environment. In such an environment, " most people
connected with the project have extensive experience in workiné
with related systems within the organization. A significant
implication ‘of this is that most of the project members can
usefully contribute to the project in its early stages, without
generating a great deal of project communications overhead in

finding out what the project is all about and what everybody else

-is doing.

In contrast, an embedded mode project’ envolves the
development . of a large software product (e.g., > 100,000 lines of
code) wusually in an "uncharted" environment e.g., feqﬁiring
innovative data processing architectures or algorithms. The major
distinguishing factor of an embedded mode software project,
however, is a need té operate within tight constraints. The

product must operate within (is embedded in) a strongly coupled

15

complex of hardware, " software, regulations, and operational
procedures, such as an electronic funds transfer system or an air
traffic control system. In general, the costs of changing the
6ther parts of this complex are so high that their characteristics
are considered essentially unchangeable; and the software is
expected both to conform to their specificatiops, and to take up
the slack on any unforseen difficulties encountered or changes

required within the other parts of the complex.

As a result, the embedded mode project dJoes not generally
have the option of negotiating easier software changes and fixes
by modifying the requirements and interface specifications. The

project must, therefore, expend more effort in accomodating

changes and fixes. It must also expend more effort in assuring

that the software actually meets the specifications and in
assuring that changes are made correctly. These factors
cphtribute both to lower productivity and to greater diseconomies

of scale on larger projects.

Our present model is that of organic-type software projects
(the most common type), and is based on literature findings as

well as field studies of such projects.

The information we gathered from an extensive survey of the
software engineering literature was used to develop the model's
"skeleton,” i.e., the model's major components and the

interrelationships between them. This effort was then

244
16

complemented by a series of field studies, which we conducted at
two large U.S. corporations, a major auto maker and a leading

mini-computer manufacturer.

The software broduction teams we studied were, in both
organizations, involved in the development of software systems for
in-house use. For exaﬁple, .one team in the auto maker was
developing a corporate-wide transportation system to "trace and
control the movement of finished vehicles, material shipments, and
vehicles of conveyance such as railcars and trucks." Another team
in the mini-computer manufacturer was busy developing an "Export
Services Operations System," that .should allow the company to

accelerate the preparation of export liscence applications.

The software systems that "our" teams were involved with were
medium in size i.e., involving teams of 5-10 members working for
six months to two years on systems that were 10,000 to 80,000

lines of code.

111.1. The Model's Subsystems:

The model consists of three subsystems: (1) The Manpower
Management Subsystem (MMS); (2) The Software Production Subsystem
(spPS); 'and (3) The Planning and Control Subsystem (P&CS) as shown

in Figure (1).

The Manpower Management Subsystem contains the manpower

17
AVAILABLE
MANPOWER
MANPONER. MANAGEMENT PLANNING & CONTROL
SUBSYSTEN SUBSYSTEM
SCHEDULE
PRESSURE
3 REPORTED
gﬁﬁggkg?oN LIFE;X%EE PRQGRESS "SCHEDULES/

DEADLINES

SOFTWARE PRODUCTION
SUBSYSTEM

CFIAUGE (1): THE MOREL‘S SI'RSYSTEMS

245
18

allocation activities e.g., the ailécation of manpower between
qguality assurance (QA) and coding at the coding phase of the
project. The Software Production SuBsystem captures the softwaré
production activities such as coding and testing. And finally,
the Planning and Control Subsystem includes the managerial
activities for asséssing préjecfl status, projecting '~ future
manpower needs, and adjusting project schedules when necessary.
Figure (1) also shows some of the important information

connections which couple the subsystems together.

Bach of the three subsystems is discussed in some detail

next.

111.2. The Manpower Management Subsystem:
In both organizations, software professionals were allocated
to only a single project at a time. Available manpower was, thus,

a function of simply the size of the project team.

As shown in Figure . (2), part of the available manpower onA a
project is aliocated fo Quality Assurance (QA)vactivities e.g.,
reviews, structured walkthroughs, e etc. This effort is
allocated‘ throughout the 1life of the ﬁrojéct based on the "QA
POLICY." The total Man-Days allocated for this activity is
usually between 5 and 10 percent of the total Man-Days for t§e
project. As seen in Figure (2), Qualitf Assuranée activities afé

affected by schedule pressures; When a software project falls

19

PLANNING

chedule
Pressure

Rework
Policy

Errorsj
Detected

CONTROL -,

_ SIBSYSTE”I ~ ~ -

i '
s \
VA - / L ol \

7 7 7/
Schedyle /
/ Pr:s;ure) /

R Tea'i'n . !
Size \
-~ o
/ \
Zﬁomplete PR
/

Available

Cumulative
Manpower

Manpower

SOFTWARE
PRODUCTION
SUBSYSTEM

FIRNIRE (9).-MAMDNUED PATAGFMENT SIRGYSTEM

246

20
behind schedule, pressures from impatient users and frustrated
managers often cause walkthroughs to be done hurriedly, without

adequate preparation --- or not at all.

The objective of QA activities is, of course, to detect
software errors as quickly as possible. Once erroneous tasks are
detected, they need to be reworked. The manpower effort allocated
to this activity will, obviously, be a function of the number of
errors detected., It will also depend on how fast the errors need
to be corrected. This delay‘is usually one week e.g., errors
"caught" in this week's walkthrough need to be corrected by next
week's walkthrough, when all cdrréctions would be " reviewed by
fellow team members, The delay, however, usually increases as
schedule pressures mount, since schedule pressures (as was
mentioned above) often lead to less walkthroughs, with longer
periods in-between. 1In most projects, reworking consumes between

5 and 10 percent of the total Man-Days of the project.

"The remaining manpower effort is used to design, code and
test the software system. Testing here refers to integration
testing i.e., testing how the different software modules work
together in an integerated system. This activity usually consumes

the last 20 % of the software lifecycle.

111.3. The Software Production Subsystem:

A software system is defined in the model in terms of a

21 . 22

number of ."tasks," ' where a task is 30 delivered source
instructions (DSI) e.g., a one page subroutine. Progress in the
project is made as workers perform tasks., The work rate is a

function of the manpower allocated and the average productivity.

P \.'\
~
Software productivity is, of course, a function of a large \\ -
number of factors e.g., system complexity, quality of personnel,
’ /
... etc. However, for a given project many of these factors f ;
1 -
S~
remain constant and thus have no dynamic influence. 1In Figure (3) | - ! ,/ ” = =~
. | VY nj izl ¥ o BE [REE
we depict two factors that impact software productivity during the | 2EE AN B e f T 2% [4y~ lg8 3
s £ w <
B 3o] w® (R s % =
course of a single project, namely, schedule pressures and - l 3 &3 - 3i “ ST g =
| : ¢ hNOET)E
learning. . l - |] | 2
; ® —— e ’ —
i I §,ﬂ,§’ . RO W
. . S | X — Pk i
Time pressures to meet deadlines has been found by Boehm * g $ - \
(<] .
: PR S wm t " S ! m "n
(1981) and others, to increase software productivity. In our own I) X Erl X g g_i_x‘:@ \ .
. a a " "
field studies we found this to be true as long as team members | L P EFlEET o |85 \gg
. "R] 2% N 5 R
. . .] n R .] 2
perceive the schedule as attainable. I B 2 l AN »\%
’ . = s \ B ~
AN TE U R A FPANY
~a i LI R iz
gtudies have also shown that software productivity is ~ . Lo EE L, 2
| =
. . ~ . BE=
affected by learning. As a project proceeds, the team members o N - |- ‘;\ 33__,:’
o : A 287 L Y, £ 3 k—f—s H8%
learn their job better, and this allows them to work faster. 529 JAY |- D oo = =
. -3 =Oogm "
: : R s . e 598 x /=88
Mostly, the 1learning involves the application itself, but it may TRES P~ aa”
am °
: . oe s
also extend to such things as new hardware, software, languages, s

... etc.

N

Once tasks are worked, tﬁey are reviewed e.g., in a
’ FIGURE (3): SOFTWARE PRODUCTION SURSYSTEM

structured walkthrough. As was mentioned above, it 1is the

. 248
23 24

objective of the reviewing activity to "catch" software errors as

early as possible, Errors that are detected will require

HANPOYER

correction, siphoning off manpower effort, that would otherwise be) | MANAGEMENT
: ’ SURSYSTEM
uged to work on new tasks.

N\ Cumulative

N

\npeuat
Unfortunately, our current software revieying techinqgues are : / P N
still imperfect ... they do fail to detect all errors, So, it is ‘
the objective of integration testing to detect and correct those
errors that QA fails to "catch."” Such errors, however, are very . U“PI:’I‘::'F“
expensive. This is simply because these errors do not remain ' : _- }(
dormant awaiting detection and correction at the testing phase. ///‘ /
They, instead, lead an T"active existence" reproducing more and - Job-Size
/Dq in Man<Days
more errors. In fact, a study at TRW showed that it is 10 times L“e¢¥9{ 3
more costly to fix a design error in the testing phase than it is ' mu/ ’ /"
at the design phase i.e., where it was "born" (Boehm, 1981). » . / zz?ir:i:: ;><3K
| [
11I.4. The Planning and Control Subsystem: ‘ . { //
As shown in Figure (4) the P&CS operates largely on the basis ' \ A / ’
of progress information supplied by the Software Production \\\ \:::\s.'};:v.ed I Productivicy / J
Subsystem throughout the project's lifécycle. ' \\) \\\ K] .ll’ : //
- \‘\ 3 ¢ J/
Tasks worked are compared to the "perceived job size i'n > ~ SOFTVARE d

PRODUCTION

‘tasks" to determine the "tasks perceived remaining." These are SUBSYSTEN

then translated into "Man-Days perceived still needed." If EIGURE (4): PLANNING & CONTROL SUBSYSTEN

"Man-Days perceived still needed" is more than"Man-Days

temaining," a schedule pressure develops that often leads to

25

longer working hours " and higher productivity. Such a stressful
situation can not continue for long, however. Eventually, project
management finds it necessary to extend the schedule i.e.,

increase the "Job size in Man-Days.”

One reason why projects tend to experience schedule problems
is that project managers often under-estimate the size of the
project. A common mistake ié to underestimaté the sizé of. the
support software. As thev project proceeds, and the level of
understanding increases (e.g., due to learning), such additional
tasks are "discovered." This, thus, expands the perceived job

size and creates schedule problems.

249

26

IV, FUTURE RESEARCH DIRECTIONS

Qur overall goal in. developing our integrative system
dynamics computer model is to establish a basic understanding of
software project management. In pérticular, we hope' to build a
tool that can help software development managers and researcheré
answer the difficﬁlt questions they need to raise when assessing
organizational health, selecting software engineering "improvement

tools" (from the many that are already available), and in

implementing their choices.

"Our system dynamics model has been coded and is running. We
are currently testing/validating it. Once this is completed, we
plan to use the model in two ways: Problem identification and

evaluation of improvement interventions.

IVv.1. Problem Identification:

There is ah abundance of "suggested" problems in software

production. Among the "front runners:" poor resource estimation,

27

changes in requirements, high personnel turnover, lack of progress

visibility, poor life cycle balancing, ... -etc.

our model can play two useful roles. First, it can be used
in testing the seriousness of the above'problems. A similar SD
application was reported by Cooper (1980) ip the shipbuilding
industry where the cost of changes in user requirements was

evaluated.

The second possible role of the model would be to uncover
still wuncharted problem areas. Lave and March (1975) wrote that
*A beautiful model is unpredictable."” We feel that studying the

interactions of factors such as those mentioned above can yield

new insights into the causes of software project failures. For '

example, in (Abdel-Hamid and Madnick, 1982b) we "discovered" that
the interactions of hiring/firing policies together with a hiéh
pgksonnel turnover rate contributed more to the scheduling problem

than did the estimation procedure.

1V.2. BEvaluation of "Improvement Interventions:"

The utilization of organizational improvement techniques
generally requires the expenditure of some scarce resource e:g.,
money, time, ... etc (Kotter, 1978). Because of this fact, and
because of the large number of tools and technigues that have been
developed, managers today have far more options for improving

their organizations' effectiveness than they have resources. Our

28

250

model would provide managers with a useful way to think about

organizational improvement issues. It would, for example, allow
managers to experiment with new poliéies at a cost significantly

lower than that of real-life experiments (Roberts, 1981).

In particular, we propose to investigate the implication of a
new.project planning and control system recently installed in one
organization, Project planning and control systems are
interesting to investigate because so much confusion surounds
them. For example, Boehm' (1981), based on TRW's experiences,
strongly recommends them; Thayer (1979) found them to have no
impact, one way or fhe other, én projects’ success or failure;

and Powers and Dickson (1973) found them to bebdysfunctional.

10.

29

BIBLIOGRAPHY

W

Aaron, J. D. "The Super-Programmer Software

Engineering Technigues:

Project."

Report on the 1869 Rome

Conference. Editted by J. N. Buxton and B. Randell.
Brussels, Belgium: NATO Science Committee, 1970.

Abdel-Hamid, T. K. and Madnick, S. E. "A Model of Software
Project Management Dynamics."™ The Sixth Int'l Computer

Software and Applications Conference (COMPSAC), November
8-12, 1982a.

Abdel-Hamid, T. K. and Madnick, 8. B. "The Dynamics of
Software Project Scheduling: - A System
Perspective.” The Third International Conference on

Dynamis.

Information Systems, December 13-15, 1982b. Also to
appear in an early 1983 issue of the Communications of

the ACM.

Ashton, R. H. "Deviation-Amplifying Feedback and Unintended
Conseguences of Management Accounting Systems.”
Accounting, Organization and Society, Vol. 1, No. 4
(1976). '

Bacon, G. "Software." Science, February, 1982.

Boehm, B. W. Software Engineering Economics. Englewood

Cliffs, New Jersey: Prentice-Hall, Inc., 1981.

Cleland, D. I. and King, W. R. Systems Analysis and Project
Management. New York: McGraw Hill, 1975,

Cohen, K. J. and Cyert, R. M. "Computer Models in Dynamic
BEconomics." A Behavioral Theory of the Firm. By
R. M. Cyert and J. G. March. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1863,

Cooper, J.D, "“"Corporate Level Software Management." IEEE Tr,
on Software Management, SE-4. No. 4, (July, 1978).

Cooper, K. G.
Framevwork

"Naval Ship Production: A Claim Settled and a
Built." Interfaces, vol. 10, No., 6,

11.

12,
13.

14,

i5.

16.

17.

i8.

i9.

20,

.21,

22,

23.

24,

25,

251

30
(Dec. 1980).

Forrester, J. W. "Counterintuitive Behavior of Social

Systems." Technology Review, January, 1971,

Gehring, P. F. and Pooch, U, W. "Software

Hallam, S. F. "An Empirical Investigation of the Objectives
and Constraints of Electronic Data Processing
Departments." Academy of Management Journal, Vol. 18,
No. 1, (March, 1875). .

Kotter, J. P. Organizational Dynamics: Diagnosis and
Intervention. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1978.

Lave, C. A. and March, J. G. An Introduction to models in
the Social Sciences. New York: Harper & Row, 1975.

McClure, C. L. 'Managing Software Development and Maintenance.
New York: Van Nostrand Reinhold Company, 1881.

Merwin, R. E. "Guest Bditorial---Software Manadement."” IEEE
TR. on Software Engineering, SE-4, No. 4 (July, 1978). .

Myers, G. J. Software Reliability. New York: John Wiley &
Sons, 1976. .

Powers, R. F. and Dickson, G. W. "Misproject Management:
Myths, Opinions, and Reality." California Management
Review, Spring, 1973. :

Putnam, L. H. "Software Cost BEstimation and Life-Cycle
Control: Getting the Software Numbers," IEEE Computer
Society, IEEE Catalog No. EHO 165-1, 1980.

Richardson, G. P. 'and'Pugh III, A. L. Introduction to System
Dynamics Modeling with Dynamo. ~ Cambridge,
Massachusetts: The MIT Press, 1981.

Roberts, E. D. The Dynamics of Research and Development. New
York: Harper & Row Publishers, 1964.

Roberts, E. B., ed. Managerial Applications of System

- Dynamics. Cambridge, Massachusetts: The MIT Press,
1981.
Schein, E. H. Organizational Psyéhology. 3rd - edition.
Englewood Cliffs, New . Jersey:

Prentice-Hall, 1Inc.,
1980, K

Scott, R. F. and Simmons, D. B. "Predicting Programmers
Group Productivity: A Communication Model." IEEE Tr,
on Software Engineering, SE-1, No, 4, (Dec., 1975).

26.

27.

28.

29,

30.

31,

31

Singer, L. M. The Data Processing Manager's Survival Manual.
New York: John Wiley & Sons, 1982,

Thayer, R. H. "Modeling a Software Engineering Project
Management System." Unpublished Ph.D, dissertation,
University of California, Santa Barbara, 1979.

Weick, K. E. The Social Psycholoéy of Organizing. 2nd
edition, Reading, Massachusetts: Addison-Wesley
Publishing Company, 1879.

Weil, H. B. "Industrial Dynamics and Management Information
Systems."™ Managerial Applications of System Dynamics.
Edited by E. B. Roberts. Cambridge, Massachusetts: The
MIT Press, 1981, .

Wender, P. H. "Vicious and Virtuous Circles: The Role of
Deviation-Amplifying Feedback in the origin. and
Perpetuation of Behavior." Psychiatry, Nov., 1968,

Yourdon, E. "The Second Structured Revolution." Software

World, Vvol, 12, No. 3, (1879).

252

