EXPERIENCES IN TEACHING SYSTEM DYNAMICS

Leif Gustafsson and Miroslaw Wiechowski
Uppsala University Data Center
Box 2103, S-750 02 Uppsala, SWEDEN

ABSTRACT

The scope of this paper is to present our views on teaching
System Dynamics and Dynamo in our courses in Systems Analysis at
Uppsala University. We treat the pedagogical aspects as well as
the hardware and software system we built around Dynamo. A large
part of this article is devoted to ideas and constructive criti-
cism of System Dynamics and Dynamo which we have acquired from
our experiences in education and research.

128

1. INTRODUCTION

The Systems Analysis Group at Uppsala University is located
in the Institute of Technology and at the University Data Center
in Uppsala (UDAC). The Group has, during the last five years,
grown very rapidly and is now working with a large number of
projects, especially in the fields of medicine, biology, and
agriculture. Several courses for students of mathematics, techno-
logy, biology, and agriculture, as well as for graduate students

from various faculties are regqularly held.

In both our research projects and courses, System Dynamics
and Dynamo play an important part. We have found it an ingenious
tool for teaching model building, simulation and also various
techniques such as identification, optimization and prediction,
often in the form of a project. Therefore, for education and
research purposes we have built up a large system of software and

course material.

2. TEACHING SYSTEMS ANALYSIS

Our group works with education and research in Systems
Analysis. We usually subdivide this field into:
1. Theory and concepts.

2. Working methodology.

3. Techniques.

The introductory course coveré all these items whereas
other courses may emphasize one or several techniques like
OA-methods, simﬂlation, or other topics.

Course materials are largely based on our books: "System
och modell"™ (ref. 1) which deals mainly with System Dynamics
ideas and "Modellbyggnad och simulering i Dynamo™ (ref. 2) which
fills the prerequisites for 1earning Dynamo and covers the
complete Dynamo language. It also includes a number of examples
with solutions provided in the form of flow diagram; and prog-
rams.

For educational purposes we. have developed a number of

exercises, especially from the fields of biology, agriculture,

and medicine and also a number of laboratory experiments for e.q.

teaching Dynamo language, optimization, prediction, sensitivity

analysis, identification and other techniques.

In the theory section we deal first with the concepts of
system, system conceptualization, and model formulation. We
stress that the whole modelling process is controlled by the
purpose of the study. The underlying philosophical strength of
the holistic view is also. accentuated.

We then examine various system classifications: static vs
dynamic, linear vs nonlinear, deterministic vs stochastic,
time-discrete vs continuous and descriptions: internal vs ex-

ternal (black-box).

129

Subsequently we di;cuss system description techniques:
causal-loop diagrams and Dynamo'flow diagrams, which we use
extensively. Students in mathematics, science and technology are
also given the equivalent descriptions in mathematical terms. In
other courses these diagrams constitute the fundamental tools for°
analysis of dynamic systems.

We then stress the importance of exposition of relation-
ships between the structure and the behaviour of dynamic systems
on the basis of the System Dynamics approach. The systems are
classified as open or closed and such notions as positive and
negative feedback and order of the system are considered. Labora-
tory exercises on these topics are also included in several
courses. »

We consider a number of notions from automatic control,
e.g. feedback, load, stability, sensitivity, feedforward etc. and
we also deal with quantitative descriptions of systems through
their characteristics such as stability, equilibrium, accuracy,
sensitivity, controllability, observability, .and concepts like
step response, ;ise time, transient, and stationary behaviour.

Finally we have a section on complex systems and counter-
intuitive behaviour in the classical System Dynamics style.

In many courses the students are reqﬁired to carry out a
project on a certain theme and to present the work as a written
report.

Much attention is focused on approaching a project in a

systematic way. Following this method we perform the steps from

problem identification,and formulation, via modelling, validation
.and solution to result evaluation énd presentation, where we also
stress the iterative nature of this work. In this context we
treat various aﬁpects of cooperation within the frame of a
project. System Dynamics and flow diagrams are then often useful,

especially for communication and documentation.

Systems Analysis contains:a vast number of techniques. In
most courses we choose to put emphasis on continuous simulation
using Dynamo. Discrete simulation, another field of our interest,
is taught through DEMOS (ref. 3) and/or SIMULA (ref. 4).

In courses at the Departments of. Mathematics and Enginee-

ring, Operational Analysis methods are important.

Continuous models and simulation are the dominating ele-
ments in several of our courses. Here we use System Dynamics and
Dynamo almost-exclusively. An exception is.made.when demonstra-
ting the differences and similarities of various céntinuous
‘simulation languages. Then we use SIMNON (ref. 5) which imple-
ments a state space approach and works with high-resolution

screens.

. Model construction and simulation constitute the foundation
to which concepts and techniques, such as objective function,
sensitivity analysis, optimization, identification, and predic-
tion are added. This is also practiced generally in laboratory

exercises.

The education scheme described above puts demands on:
-nwritten materials such as books, manuals and laborafory'guides,
(already treated above).
- hardware and software.

~ pedagogical appreach.

3. SYSTEM DESCRIPTION - HARDWARE AND SOFTWARE

The computer system we use in an IBM/370 compatible BASF

7/68 machine running under MVS 03.8 with which users communicate

-through the Gothenburg University Timesharing System GUTS (ref.

6) . The software is based on Dynamo 1I/370 version 8 (ref.v7) as
the nucleus of a fairly complex but user—friehdiy system contai-

ning various extensions and utility programs. See figure 1,

As most of our studenté have a rather limited experience of
computers, we prepared a number of easy to use dedicated éommand
procedures and selected a well-defined subset of editor commands
to be taught (ref. 8). Therefore we are able to concentrate our
efforts on the main subject of model buiiding and siﬁulétion,

paying only a little attention to the intricacies of the coﬁputer

operating system, file handling, job control language etc.

BRDCAST Li}m Je—>]{14a chcck

i

Figure 1: The integrated system proviaes many facilities in an

easy to handle Dynamo environment (DYNRUN - interactive run,

DYNRR ~ interactive reruns, DYNSUB - batch run, DYNDOC - documen-

tation, SIMDYN - Dynamo in Simula, DYNTAB - table handler,
DYNPLOT - high-resolution plot package, DYNSTAT - statistical

package) .

As soon as the user gets the terminal éonnected to the
system, he or she can log in through the LOGIN prqcedure which
performs an identity check, makes a record in a logfile and calls
our mail systems BRDCAST to display current méssages for this
particular user as well as for the group of users he or she
belongs to. Once the login procedure is complete, the ﬁser can’

access the INFO procedure to get concise information on any

131

facilities available in the system. If any problem occurs and no
instructor is present, a special ASK procedure may be called to
put questions into the MAILBOX file, which is regularly monito-~

red, and answers are given through. BRDCAST.

~ The other procedures concern running Dynamo programs and
associated utilities. A great effort was made to facilitate easy
use. Missing parameters of any importance are asked for and
fairly detailed self-explanation may be obtained from each
procedure.

The most commonly used command procedures are DYNRUN, DYﬁRR
and DYNSUB which call the Dyhamo I1/370 compiler and run time
systemvfor user program execution. DYNRUN is the general proce-
dure used in the interactive mode iﬁ our GUTS terminal system.
DYNRR is a special variant of DYNRUN designed for interactive
reruns. DYNSUB is used mostly for large jobs as .it submits
programs to batch processing. The results can be fetched with the
help of the DYNOUT procedure or the jos can be aborted by DYNCAN.

The above procedures give the user éutomatic access to two
external libraries: MACLIB, where a number of useful macros have
been stored, and FORTLIB, 'containing Fortran functions that may
be called from within user programs. wﬁ implemented e.g. the
BOXCAR . facility through a Fortran functgon which was then wrapped
around by a macro definition go make it easier to use and stored
in MACLIB.

There is also a library of complete System Dynamics models

MODLIB. Each model can be brought into the system with the help

of the GET procedure and immediately executed as a Dynamo prog- 132

ram.

_ For documentatibn purposes we developed the DYNDOC proce-
du;é which calls fﬁe standard Dynamo utilities, pocumentor and
Nﬁmber._However, we regard this kind of documentation as rather
poor and prefer well documented flow diagrams with all quantities
sgparately»fully described as the main documentation tool. A well

structured and commented Dynamo list is merely an appendix.

Our version of Dynamo has the ability to generate special,
"database-1like" SAVE-files where various data concerning selected
quahtities may be stored for subsequentluse. In 1981 we conceived
a plan for making use of these files for post-processing purposes
and received information on their internal structure from Pugh-
Roberts Associatés, Inc. The plan prdved to be productive and
became an important factor in linking various system utilities
togethér. Wevhave been able to develop two major interactive,
commandidfiven programs: DYNPLOT and DYNSTAT that access SAVE-
files and transform the data stored there into easily intellig-
ibie information. DYNPLOT creates plots on a high resblution
screen, providing the opportunity of dbfaihing phase-plane curves
as well as time-function displays. DYNSTAT pérforms a number of

statistical calculations.

Another program worth mention is a Dynamo-table handler and

generator, DYNTAB, which allows a number of operations on one- or

10

twodimensional tables to be performed, such as summing, mulﬁipli—
cation and inversion, and new tables may be generated from old

ones according to the Dynamo (T~card) or DARE P format.

Usage of the main procedures is monitored and recorded in
the logfile giving us useful information on the basis of which we
have been able to improve the system and keep track of student

activities.

There are also other procedures and utilities which are of
no great relevance to an "average" user as they were intended for
system maintenance only (e.g. adding new macros or compressing

the library).

We have also implemented the program ﬁackage *Dynamo in
Simula®” based on Hegna (ref. 9) and developéd in Regionales
Rechenzentrum Exrlangen in Gefmany (ref. 10) on our computer
system. This powerful package, which Qe call SIMDYN, makes it
possible to write Dynamo-like prégrams in Simula giving us
facilities cdmparable with those of the full Dynamo III language.
What is more, the source code is accessible and can be easily
extended (e.g. to implement new functiong) or altered (e.g. to
change the Dynamo integration rules orfadd facilities for opti-

mization or identification).

Besides Dynamo, Dynamo in Simula and SIMNON we also have

access to CSMP (ref. 11) and DARE P (ref. 12) packages for

11

Continuous System Modelling and Simulation. Both of these iangu;
ages can be run with the help of easy to use procedures. They
take advantage qf Fortran as an intermediary language which means
that many error messages are given in terms of the Fortran
compiler or its run time system rather than in tyose of CSMP or
DARE P, which confuses novice users. This is one reason that
neither of these languages have achieved the same popularity as

Dynamo, despite'some interesting features.

4. EXPERIENCES IN SYSTEM DYNAMICS AND DYNAMO

It becomes clear from the above that System Dynamics. and
Dynamo hold a central position in the course content, in our
teaching, and as technical tools.

For students trained in mathematics System Dynamics provide
an interesting alternative with easy to understand schematicism.
It should be pointed out that graduate engineers and mathemati-
cians also need a tool for communicating with mathematically less
trained people about dynamic systemé. For biologists, agricultu-
rists and quite a few economists it is the 6n1y realistic way of
coping with dynamic systems. .

Our experience from System Dynamics and Dynamo in education
is very positive. Their advantages have been praised in many
articles and we share the positive opinion of the basic philosop~-

hy of System Dynamics and its realisation in Dynamo. Our criti-

133

12

cism which follows is aimed at suggesting some improvements as

result of our experience from education and research.

4.1. Some suggestions on System Dynamics

The basic idea behind System Dynamics is to describe the
structure of dynamic systems with the help of levels and rates so
that loops‘of different kinds appear clearly. For this purpose
causal-loop diagrams are used to give a rough picture showing
components, causal relations and the loop structure.

The flow diagram is a more detailed system description. Its
strength derives from the description of dynamic structures with
the simple concepts of level and rate. This diagram is a tool for
communication, documentation énd, above all, a basis for a
simulation program, traditionglly but not necessarily, written in

Dynamo.

Although we make use of causal-loop diagrams to introduce
the loop concept and as a first modelling step, the flow diagram
is the main description tool.

The standard flow diagram symbols aré ingeniously simple
and clear. However, in common praxis théie are some points of
confusion that could be eliminated.

In our opinion the symbols and their use should be simple

but strict. At the same time the connection to simulation prog-

rams should be regarded. We équest the following:

- 13

~a. It is very important to define a positive direction of a
flow and to follow this convention stfictly. The arrow should
therefore define this positiye direction. This does not imply
that the flow is unidirectional but it means that a flow in
opposite direction is negative. Experience shows that this

convention eliminates a lot of confusion in the modelling phase.

Double arrows should be absolutely banned.

Figure 2: The arrow defines the positive direction according to

our convention.

b. The flow diagram ié multiplicative by its nature and any
othe; operations (such as addition, subtraction or division)
should be explicitely stated, which is often left undone. A
typical example is the two kinds of constants shown in figure 3.
It would be more precise to indicéte time constants by 1/T rather
than T so that the multiplicative convention can be consistently

applied.

134

14

Ko

Figure 3: All constants should be multiplicative if nothing else

is indicated on the diagram.

c. Time delay EEEB is a fairly common and practical symbol,
which really means [::] + E::N taken once or more. We noticed
that the similarity of this'symbol with [] give rise to various
kinds of errors when the students wish to put a time-delay in
their diagrams. They find it difficult to understand whj the
symbol must be preceeded by a rate and followed by a level.

This inconvenience can bé eliminated if we put the rate
symbol X into the delay symbol which gives Bl . This is
merely a simple trick, but it works -~ the students are immedia-

tely able to handle the symbol in the proper manner.

-’ qu }.

Figure 4. Stressing that the delay is in fact composed of two

symbols [::] +-[::X helps to avoid mistakes.

15

d. We would like to propose that the System Dynamics

symbols should be standardised as follows:
0,0 —
2T T -
B
>
] @

Figure 5: A proposal for flow diagram symbols.

Using of other symbols should not be encouraged.

4.2. Connection between flow diagrams and simulation programs

Flow diagrams, through the close connection between their
symbols and program statements, constitute an excellent basis on
which simulation programs can easily be constructed. Various
continuous system simulation languages as Dynamo CSMP, DARE P and
SIMNON do not differ much in their structure. Tﬁe most essential
difference is the form of the st;te equatiohs. The flow diagrams
can therefore be a basis not only for Dynamo but als§ for other
continuous systems simulatioﬁ languages.‘The Center for Agricul-
ture in Wageningen, Netherlands, has for exaﬁple used System
.Dynamics and flow diagram symbolism together with CSMP for a long

time.

135

16

The explicit Euler integration form that Dynamo adopted for
its state equations is excellent from the viewpoint of pedagogy,
especially for students without mathematical background. In our

lectures we point out the coupling between the Dynamo level

equation and the concepts of derivative and integral, also

showing alternative state equation forms that other languages

make use of. We achieve this through the following argumentation:
The level equation in Dynamo iﬁ:

Clxk=[Ca+ Z @8 X .0 ‘—};‘ [GUT A . J%) *pT
Sui)stituting NET ¥ JK = (Z[O8X .0k - 2 .JK) we get:

ek =05+ H 5k » br

which is equivalent to:

. -[J.a

DT

= [A.x

This expression corresponds to the definition of derivative when

DT->0. This can also be written as:

al]

dt

N erC- X

which is the form used by DARE P.

17

Labelling the time axis as below:

start just now
}——+——|——'—— -~ - + + } o THE
.A .B .C .J K .L
DT DT JJK KL '

we can successively develop the level equation according to

[k o= [:]J + [.Jk*pr
Cl.s-= DI +_ N 1a*pT
C.r =CJ.n + C D4 w1

[(J.8 =[J.a +[_ 4 .aB*pT
which gives:
L Jx=CJ.a +(CN.28 +[A.Bc + ... +_N.3K) *DT
« .

ie. [Jx=Ja+T [N *IJT

A

K
or E:].K=[:].A +.I}::3ﬂdt
A

A mathematician would call the last symbol an integral with

respect to time.

This. last form is used e.g. in CSMP where you write:

136

18’

CJ.x=1nrorn (¢, (] .a)

where [_J.a is the initial value of [].

4.3. Comments on Dynamo

In order to hold a course in modelling, simulation, systems
behaviour and demonstrate various- techniques such as sensitivity
analysis, optimization and identification, all within strict time
limits and with practical applications in mind, we needed an
adequate programming language available on our computer equip-

ment.

Our choice, Dynamo II/370, was motivated by the following
advantages of Dynamo:

1. A good, natural connection between the flow diagram and
Dynémo program. Even though the flow diagrams can be applied to
other languages, Dynamo level equations are the most pedagogi-
cally formulated, which is a matter of great importance for
understanding the concept of System Dynamics.

2. Simplicity and clearness of the language. The statements
can be easily coded from the diagram and havé a plain and common
form. The time indices (.J, .K, .JK, etc)lére syntactically
unnecessary but give the programﬁer an additional help.

3. The system is reliable. The error and warning messages

are well formulated and informative.

19

N 137
‘4. Dynamo II/370 is roughly 5-8 times faster than CSMP or
DARE P when running small and medium scale models which are
common in the student environment. Dynamo is also much easier to
use. '
5. The control statement SPEC and the standardised output
are very easy to learn and do not diétract the user from the task
of model building.
6. For more advanced applications there are several useful
facilities like reruns, comparative plots, user-defined macros

and external Fortran functions.

Some of the disadvantages of using Dynamo are:

a. Its closeness - a user cannot insert an "own code block”
(which is only partly compensated for 'by macros and external
Fortran functions) - and unavailability of the source code (which
hasn't much to do with the language itself).

b. The lack of optimization and identification facilities
is a major drawback of Dynamo. Both tﬁese require that a criteria
function, which can be easily written in Dynamo, may be evaluated
with an algorithm in order to set new program parameters for the
next rerun. This could ﬁe achieved if we had the means to control
reruns with criteria function value obtainéd from the previous
run.

c. The Euler integration rule, in spite of its rather bad
reputation, works surprisingly well in practical applications.
However, to be considered a mature language (and perhaps to avoid

the not always competent critique), Dynamo should be equipped

20

with alternative integration algorithms, like Runge-Kutta's

method and why not an algorithm for stiff problems.

On a more detailed level we have found a number of irrita-

ting deficiencies, most often quite unnecessary. Several of them-

could be attributed to Dynamo being an American rather than an
international language, while others could be explained as design
flaws. From this viewpoint we will suggest some improvemenfs we
find desirable.

d. Quantity names should be meaningful which is difficult
or impossible to achieve within the limit of 6 characters imposed
by Dynamo (as a matter of fact, Dynamo II/370 can distinguish-
names of up to 60 characters, truncating them to 7 characters on
output, an undocumented feature). Names like FMFAF and like are
inconvenient.

e. Another restriction is put on the so called national
characters which most European languages abound in. We do not see
any reason for this since no standard ASCII characters which
share codes with national characters are used in Dynamo for any
other purpose (e.g. 64, 91-94).

f. Logical flaws and lack of consistency lead to unneces-
sary confusion. Dynamo sometimes deviates from the common sense:
- LENGTH parameter ought to either denote'éimulation time length
as in DYSMAP (ref. 13) or be renamed to something that would
imply its real meaning: the value of TIME when the run is to be °

terminated.

21

- PRINT and PLOT statements should be treated in the same manner.
However, two separate PLOT statemenﬁs will generate two separate
plots while two separate PRINT statements will often-combine into
one table. Our older version of Dynamo II and also Mini-Dynamo
are more consistent in this respect. ‘

~ The scalling letters which Dynamo sometimes uses to indicate

powers of ten are a real peculiarity without a counterpart. in any

of the other languages we know. Using e.g. R fdr tRillions (which
means E+12 in the USA and E+18 in other cogntries) is both
unsuitable and difficult for a student or researcher to learn. A
better alternative could be to output E+12, even if that requires
more space.

g. The Dynamo run time system gives very good and clear
error and warning messages, zero division being the exception in
some versions. Moreover, some warnings are unnecessary and even
irritating, e.g. "DYN ASSUMING..." (if the expression.is not
overparenthesized) or, in some cases "UNUSUAL FORMAT FOR
LEVEL..." (which is raised by e.g. L L.K=L.J-DT*R.JK).

h. The date format Year/Day/Month does not adhere to ISO
standard: Year/Month/Day.

i. The cumulative rounding errors - e.g. getting 74.99
instead for 75 - which become visible during the output of TIME
values (caused by the algorithm used: TIME.K=TIME.J+DT) are
unpleasant and one should try to remove or minimize them. We
wrote several Pascal and Fortran continuous systems simulation
programs modelled after Dynamo and found that the following

algorithm works satisfactorily:

138

22

1. Let TIME.O and TIME.END denote the initial and end time

values.

2. Compute LENGTH=TIME.END-TIME.O.

3. Compute NSTEPS=INT(LE>H/DT+0.5).

4. TiME.K=TIME.O+K*LENGTH/NSTEPS
This means, in effect, that the DT value cannot be changed during
one run. In many cases this is of little importance. However, any
user's attempt to change DT in his or her prograﬁ {(either expli-
citly or through the choice of an alternative integration rule
which works with variable 1ntegrat10n step length) could be
easily detected by the compiler and the decision to use the "old"
time increment algorithm could be made.

j. Computer graphics is gaining in popularity as the prices
of high resolution screens fall. It is a cémparatively easy
matter to add a post—processé; of SAVE-files providing for
graphic displays and thus the internal organization of SAVE-files
shbuld be described in the manual.

k. External macros and Fortran fﬁnctions play an important
role in advanced Dynamo. These are conveniently stored in libra-
ries. Unfortunately, it is not possible to access a single macro
from within the program as the whole 1ibréry will be inserted in
memory at once. As several library macros may call Fortran
functions and the number of external Fgétran calls may be limited
by the Dynamo implementation (as in our case: max 3), this may
cause abnormal program end. This problem can be solved from case

to case but a more general solution would be welcome.

23

4.4. Some practical tips and suggestions

Dynamo contaips on the whole a well‘selected set of functions
which can be completed with macros and Fortran routines. In our
work we found the following functions especially useful:

a. Macro DURING(FROM,TO) implemented through the CLIP -
built-in function - simple but very useful in a vast number of
cases.

b. Array function TABXY which will fetch values from Dynamo
tables (T-statements) and simulate 2—dimen$iona1 arrays. This
function is also implemented as a macro and utilises CLIP func-
tions for selection o: up to 16 T-rows.

C. BOXCAR function, implemented.through‘Fortran. The main
function is wrapped around by a maCro,defiﬁition for easy user

interface.

When implementing a ﬁodel with many reruns it may soﬁetimes
be desirable to skip these reruns during the test phase. We
discovered that putting QUIT after the first RUN statement in the
program source file works perfectly wéll, just as if given
interactively from the keyboard. l

In our system‘a blank line functions iike a NOTE statement,

which enhances, in our opinion, readability of the program.

139

24

5. CONCLUSIONS

The above described pedagogical approach has proved to be a
flexible and efficient instrument for teaching System Dynamics
and simulation. During the last five years more than 450 student
including 150 graduate students of Uppsala University and the
Swedish University of Agricultural Sciences (also situated in
Uppsala) have completed our courses. A number of them now use
these methods in their research.

Although there are strong limitations in Dynamo, the
language has also been shown to be surprisingly well suited to
most research projects, although the lack of posibility to
control Dynamo II/370 from external routines prevents optimiza-

tion and identification in an easy way.

In this article we have also presented some criticism of
System Dynamics and Dynamo in connection with some solutions and

suggestions we have found useful or desirable.

6. REFERENCES

1. Gustafsson L., Lanshammar H., Sandblad B. "System och
modell”, (System and Model), Studentlitteratur, Lund, Sweden

1983.

25

140

2. Gustafsson L. "Modellbyggnad och simulering i Dynamo",
{Model Building and Simulation in DYNAMO) , Uppsala 1983.

3. Birtwistle G.M. "DEMOS A System for Discrete Event
Modelling on Simula“,‘The Macmillan Press Ltd 1979.

i 4. Eirtwistle G.M., Dahl 0-J., Myrhaug B., Nyg'aard K.
"SIMULA BEGIN"; Petrocelli/chérter, New York 1975.

5; Elmgvist H. "SIMNON An Interactive Simulation Program.
for Nonlinear‘Systems - User's,Ménual“, Dept. of Automatic
Control, Lund Insti£ute of Technology 1975.

6. Gothenburg University Timesharing System GUTS v3.6
Reference Manual, Gothenburg 1983.

7. Pugh A.L. III "Dynamo User's Manual", The MIT Press
1983. '

8; Gustafsson L. "Att kdra Dynamo p& UDAC", (How to run
Dynamo at UDAC), Uppsala 1982.

9. Hegna H. "Dynamo in Simula 67 - A Rough Outline of a
Siﬁﬁle Implementation®, Norwegian Computing Center, Olso 1974.

v 10. Simon K.-H. "Dynamo in Simula - Simulationsinstru-
mente aﬁf Simula-basis", Regionales Rechenzentrum Erlangen, IAB
Nr.llla, Erlangen 1980.

11. System/360 Continuous System Modelling Program User's
Manual, IBM Application Program, New York 1972.

12. wait J.V., Clarke D. "DARE P User's Manual Version
4.1", bniversity of Arizona - College of Engineering, Dept. of
Electrical Engineering 1977. ‘

13.4Ratnatunga A.K. "DYSMAP User Manual", System Dynamics

Research Group, University of Bradford 1980.

