BIFURCATIONS AND CHAOTIC BEBAVIOUR IN A

SIMPLE MODEL OF THE ECONOMIC LONG WAVE

by

Steen Rasmussen ‘and Erik Mosekilde
Physics Laboratory III
The Technical University of Denmark

2800 Lyngby, Denmark
and

John D, Sterman
System Dynamics Group
Sloan School of Management
. Massachusetts Institute of Technology

Cambridge, Mass. 02139, USA

103

Steen Rasmussen and Erik Mosekilde both graduated as engi-
neers from the Technical University of Denmark.-steen Rasmussen
is presently a PhD-student at Physics Laboratory III and is
concentrating on instabilities in non-linear dynamic systems.
Erik Mosekilde is an associate professor of modern physics. He
holds a PhD from the Technical University of Denmark and a Dr.

Scient. from the University of Copenhagen, both obtained thrOugh

‘work on instabilities and non-linear effects in piezoelectric

semiconductors. John Sterman is assistant professor in System
Dynamics at the Sloan School of Manadement, MIT. His PhD was
concerned with changes in the US economy associated with the
ongoing transition from oil and gas to unconventionél energy
sources. In recent years, he has devoted much of his attention to

studying the economic long wave.

ABSTRACT

This paper presents a total stability analysis of a simpli-
fied Kondratieff-wave moéel. The purpose is to showvhow such an
analysis can be carried out and to illustrate the kind of infor~
mation one obtains.

For normal parameter values the Kondratieff wave model has a
single unstable equilibrium point. Combined with non-linear con-
straints in the model's table-functions, this instability creates
a characteristic limit cycle behavibur. For other parameter va-
lues, however, the model is stable and generates damped oécilla-
tions instead of the limit cycle. For yet other combinations of
parameters, the non-linear constraints yield to the instability,

and sustained exponential growth or total collapse result.



By means of linear stability analysis we first determine
the conditions for the transition between a stable and an unstab-
le equilibrium to take place. This transition is known as a Hopf-
bifurcation. Using global analysis we outline the phase-portrait
of a fully developed limit cycle. By the same method, we examine
the conditions under which the nén—linear functions fail to
contain the system so that exponential run—dway or collapse
occur. A DYNAMO-program is then developed which calculates the
Lyapunov exponents of the system during a simulation, and we
discuss how these exponents can be used as a measure of the
divergence or convergence of nearby trajectories. Finally, we
i1lustrate how subsequent period doublings and chaotic behaviour
can occur if the model is driven exogenously by a weak sine-wave,

representing for instance the shcrt term business cycle.

INTRODUCTION

During the last few yeafs we have witnessed the development
of two different schools within the System Dynamics community.
One school, centered in North America, emphasizes its concern
ﬁith real world problems such as national economic development,
resource management, and top-level decision making. The other
school, influenced by Prigogine, Allen and their co~workers in
Brussels, is engaged in mathematical analyses of bifurcations,
chaos and other forms of instability that occur even in relative-
ly simple non-linear models.

The views that these two schools have developed on several

basic issues appear quite conflicting. While the North American
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school hypothesis that social systéms generally are stable and
insensitive to paraméter‘variations, the Brussels school postu-~
lates all social (and biological) systems to be inhetentlﬁkun-
stable, and particularly emphasizes situations in which small
parameter shifts change the qualitative behaviour of'ﬁ system.z
While the Forrester school tends Eo consider.chaOB as a phénome—'
non mainly of academic interest, the Prigogine school postulates ;
chaos to be the usﬁal mode of behaviour for constrainé (non-
linear) systems with more than two state variables. .
In the present paper we shall contribute towards the unifi-
cation . of the two schools by analysing a typical problem from the
Forrester school with the mathematical tools used by the Prig;- ;
gine school. From a basic scientific point of view, we do not
think that one can avoid accepting the relevans of chaos and the
ideas of Prigogine and his co-workers. But equally important is
the (generally unrecognized) fact that the System Dynamics method
developed by Forrester is complete and self-consistent enough to
incorporate these ideas without any change. We believe th&ﬁ the
two approaches should be used to complement ohe anoéhet: é;asical
Systems Dynamics should recognize'thevtelevance of unstable beha-
viours in the same way System Dynamics has already added Ehe
dimension of dynamical behaviour to the analysis of social sy-
stems; the Brussels school should‘emphqsize the development of
more realistic models when dealinglyith social and economic

issues,

THE MODEL
Figure 1 shows a System Dynamics flow-diagram for a sim-

plified version of the economic long~wave model developed by



Stermanl. This model explains the Kondratieff-wave in terms of .

spbsequent expansions and contractions of the capital-goods sec-
tor of an industrialized economy as it adjusts to the required
production capacity. The existence of "capital self-ordering”,
that is the pos;tive feedback loop associated with the fact that
the capital sector depends on its own output for an expansion of
its production capacity causes the model to be upstable. Even if
the model is initiated in its equilibrium point, the slightest

disturbance triggers an expanding oscillation.

Figure 1

Well away from the equilibrium point, the model behaviour is

confined by non-linearities. One such non-linearity arises from

an assumed saturation of the capital order rate as desired

production exceeds potential output by more than a factor of 2.
Another non-linearity is associated with the upper limit to the
utilization of a given production capital. For normal parameter
values, the model therefore exhibits a characteristic limit cycle
behaviour. In accordance with the statistical results obtained
from economic time series analyses by Rom_iratieff2 and others3,
the period of the cycle is typically 50-60 years.

In the real world, several other positive feed-back loops
are at work, just as many other qon—linear mechanisms help to
contaip the swings of our economy. Some of these mechanisms are
discussed by sterman‘, and  are also involved in the System
Dynamics National Economic Model5+6, These mechanisms will not be

considered here. The simple one-sector model has purposely been
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designed to isolate and study one pafticular mechanism which
appears important for the development of the economic long wave.
Until the dynamics of this madel are fally understood, we would
be reluctant to proceed to more complicated models.

Our simplified Kondratieff-wave model contains two state
variables: the in-place production capital PC, and the backloé‘of

unfilled orders for capital UOC. Production capital divided by

.the capital/output-ratio COR (assumed constant) gives the poten-

tial output PO, and together with the capital utilization factor
CUF, this determines the actual production rate PR. The capital
utilization factor is a function of desired pfoduction DP rela-
tive to potential output PO. The non-linear relation assumed for
CUF is depicted in the lower right corner of figure 1. The func-
tion is defined such that capital utili;ation is unity when
desired production equals potential output. As the desired pro-
duction exceeds the potential output it is assumed that capital
utilization can be increased slightly, but even when DP>>P0O, CUF
never exceeds a certain maximum level.

' As further simplifications we consider the desired produc-
tion of Qoods DPG to be constant, and we assume that production
of goods has a higher priority than capiial production. By sub-
tracting DPG from the total production rate.PR we then obtain the
rate of capital production which is taken to equal the capital
acquisition rate CAR. Capital deprecidﬁion is exponential with an
Averaée life-time of capital ALC.

Acquisition of new capital automatically reduces the backlog
of unfilled orders for capital. New orders are assumed to be
placed at a rate OR which eéuals replacements of discards modi-
fied by the multiplier from desired production MDP. The function

that we have used for MDP is also sketched in figure 1 (lower



1left corner). The multiplier is qéfined such that the capital
order rate equals capital depreciaFion Qhen desired production
corresponds to potential output. As desired production exceeds
potential output, MDP increases rapidly to saturate at a value of
4.0,vwhen'DP/P0>2. To close the loop, desired production DP is
finally determined as desired prodhction of goods DPG plus the
desired production of capital, the latter being defined as unfil-
led orders for capital divided by-a normal deliQery delay for
capital DDC.

The simplified economic long-wave model is dominated by the
so-called self-ordering loopl. This is a positive feed-back loop
which in many respects is similar to the accelerator loop of
ordinary economic accelerator-multiplier models’. In the present
model this loop connects cépital order rate to desired produc-
tion, desired production to unfilled orders for capital, and
unfilled orders for capital back to the capital order rate. The
complete DYNAMO-program for the model is given.in App. A. As

base case parameter values we have taken:

capital/output-ratio COR = 6 years
average capital lifetime ALC = 20 years
delivery delay for capital DDC = 3 years

The purpobse of our analysﬁis is to examine changes in the charac-
teristic mode of behaviour as these and other parameters change.
The base case parameters are not realistic of actual economies.
In particular the capital/output tatio COR is far too large.
However, the purpose of the analysis is not to explain the origin

of the long wave but to illustrate the use of various analytical

techniques. Though the model is based on the simple Kondratieff-
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'wavé model developed by Stermanl,.it has.been simplifigd so as to

hake'the analysis more transparent. The full simple model gene-
rates the long wave wiih moré realistic parameters.

vFigure 2a shows a simulétion perfurmed with the above para-
meter values. Through an initial transient, the model approaches
a limit cycle with a period of approximately 80 years. The cha-
racteristic features of this type of behaviour may be more evi-
dent from the phase-plot in fiqure 2b., Here we have plotted
simultaneous values of prodﬁction capital and unfilled orders for
capital ‘(both normalized relative to the desired production of .
goods) during the evolution of the system. Note how the trajecto-
ries approach the limit cycle independent of the initial condi-
tions. If the model is started at a point inside the limit cycle,

the oscillations grow, and vice versa. The limit cycle is said to

be an attractor for the system.

Figure 2

Our model is in equilibrium when the three rates OR, CAR, and DR
are equal. It is a simple matter to shoy that there exists only a
single equilibrium point which is detérmined by

PC_ _ COR-ALC
DPG  ALC-COR

and



UOC _ COR-DDC
DPG ALC-COR

;
The positioﬁ of this pdint is also indicated in figure 2b. For
the basg case pafameter values thé equilibrjum point is unstable.
This means tﬁat;éven if the model is started close to equilibri-
um, the trajeciory will move away'from this point and approach
the 1limit cycle. Indeed, even if thé model is initiated in

equilibrium, computational noise amplified by the positive self-

ordering loop is enough to start the limit cycle. On the 6thet

hand, if the capital/output-ratio is reduced from its base case
value of COR = 6 to COR = 4, the equilibrium point becomes
‘stable, and the model exhibits damped oscillations. This is
illustrated in the time- and phase-plots of figure 3. Now the
trajectories approach the equilibrium point regardless of the

starting point in.phase-space.

~en

Figure 3

To the extent the model represents the interactions.which produce
theveconomic long wave , the stability properties of the model
correspond to those of the real world. Thus, if by some means our
economy was brought into equilibrium, the consumption on a hot
"summer day of one single bottle of beer mofe than produced -could
trigger the Kondratieff wave. It might take a few hundred years

for the wave to fully develop, but once distorted the economic

system would never be able to restore an unstable equilibrium
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condition. The build up of cdherent macroscopic oscillations by

~amplification of random microscopic disturbances is a somewhat

simplified example of what the Prigogine school calls a self-
organizing processs. Such behaviours have long been generated and
explained in classical System Dynamics models such as the commo-
dity model (Meadows) and the Lotka-Volterra predator pray model

(Nathan Forrester).

LINEAR STABILITY ANALYSIS

The simple Kondratieff-wave model can be recast into two non-

" linear coupled first-order differential equations'(one for each

state variable):

dpc _ pC '
= —= CUF{DP/PO} - DPG - 4

at " Cor ALC (1a) -
and-

duoc _ pC PC

&3t - aic pp{pP/PO} - CoR CUF{DP/PO}+ DPG (2a)

Here, CUF{DP/PO} and MpP{pP/PO} represent the two table-functions

for which the independent vatiable‘can\be expressed as

_DP _ UOC/DDC + DPG
PO PC/COR . (3a)

To simplify the mathematical treatment let us substitute

R, UC bP___,
DPG . DPG ! PO
COR —»c, ALC—+t, DDC—sp

CUF{} — £(z), and MDP(} —g(z).

The governing equations of motion can then be rewritten as



x=2f -1-Zopey (1b)
and ' :

¥y =Zg(z) - Zf(z) + 1 = Qlx,v) (2b)
with

z =¥ 1 : ™)

x/c

To determine the stability properties of the equilibr{um
point, we only need to know the form of the differential equa-
tions in the neighboufhood of this point. The model is construc-
ted so that in equilibrium DP = PO (desired production equals

'potential output), and consequently z = 1, Close to the equili-
brium point, the two table-functions can therefore be approxi-

mated by

£(2) =1+ a(z-1) vith a = g§
z=1
and
glz) =1 + B(z-1) with p = 9%
z=1

Figure 4 illustrates how a« and p are defined as the slopes of the
table-functions in z=1. Typical values of the two parameters are

e = 0.75 and B = 3.

Pigure 4

We may now proceed to solve the coupled linearized equations

in

of motion in terms of two linearly independent eigenfunctions

e*1t and e*st, If the real pért,of the complex conjugate eigenva-
lues is positive, Re{r,} = Re{r,} > 0, the solutions are exponen-
tially growing, and the system is unstable.

A possible procedure is to determine A, and A, as the eigen-

values of the Jacobian (or functional) matrix 9

, 9% 9y .
with P(x,y) and Q(x,y) as defined by (1b) and (2b) evaluated at
the equilibrium point. This gives

ney

* = Ypiegy) 4 1 Y(Pwo')z - 4(PJOI-PIQY)  (4)
2s 20« 25 [Py xQy~PyQx

with the partial differential coefficients

' P 1, - 1
! e s (1~ - —
Py ax c(1 ?’ <
P [
! = e -
2 T

o =32 - -1 - La-a

Since the average lifetime of capifal for any realistic
system must be larger than the capital)output—iatio (x>c), we

have
P;Q; - P§Q§ > 0.

The last term in the square root of eq. 4 is therefore always

&

n



negative, and the~cond1tion for neutral stability, Re{l}~= o,

reduces to

Py + Qp = 0.

or . _
AlCc'DDC| 1 [ (1-a)
B —— | — + — - . ,
COR ALC DDC COR '
Figure S

Pigure 5a shows avset of neutral stability curves plotted
with the capital/output-ratio COR as the independent variable and
‘the slope e of the capital utilization function as a parameter.

The curves were calculated for an average capital lifetime of ALC

= 20 years and a normal delivery delay of DDC = 3 years. The’

neutral stability curves can be interpreted as follows: for given
values of a«, B, and COR, if the point (COR,.p) falls be;ow the a~
curve, the equilibrium point is stable, otherwise it is unstable.

‘As an example, the point C03 = 6, B = 3.0 is found to lay
above the neutral stability curve corresponding to a« = ,75, The

Kondratieff-wave model is theréfore ungthble for this set of

parameter values, as verified by the simulation in Fig. 2. It is

interesting to note that for given values of p and a, the Kondra-
-tieff-wave model can be unstable both for high and for low values
of the capital/output-ratio with a stable region in between. This
is a rather unexpected result which could certainly cause confu-
sion if instead of a formal analysis, the stability properties of
_the model were investigated only by simulating with many diffe-

Y
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rent combinations of parameter values.

With at least 5 different parameters in the problem, there
are many ways to present the ﬁéutral stability curves. Figure 5b
shows the stability curves as function of COR for various values
of the delivery delay for capital. « = 0.75 and ALC = 20 years
are here taken to be constant. All the curves now cross at a
point corresponding approximately to COR = 5 years. At this point
the stability properties of the model are completely independent -
of the delivery delay for capital. For higher values of the
capital/butput-ratio, an increase in the delivery delay for capi-
tal reduces the stébility of the model, while for smaller values
of COR (COR<5) increasing the delivery delay gives a more stable
system. Similarly one can find a region around COR = 1 in which
the effect of increasing the average lifetime of capital changes
from being stabilizing to being destabilizing..

A point of neutral stability is a point where the eigenva-
lues A, and A; of the equations of motion (1) and (2) cross the
imaginary axis from the left half-plane (negative real values) to
the right half-plane (positive real values). In mathematical
literature this phenoﬁenon is known as a'Hopf-birfurcationlo. At
the cross-over point the period of oscillatlbﬂ as determined from

the imag;nary parts of the eigenvalues is given by

T = 2x - 2nALC .
N ETENY > !
BEE(ALC—COR)

T is not directly proportional.to the average lifetime of
capital, as one might perhaps have expected. The nonlinear depen-
dence of T on ALC is also demonstrated in the full simple model

of the long wave 1, 1t is woith noticing that the period of

13



oscillation at the cross-over point is independent of the parame-

. ter a, For typical values of the other parameters we find T £ 30

. yeérs. There is no (genéxal) mathematical theory that allows us

to determined the period for the fully developed limit cycle.11

GLOBAL STABILITY ANALYSIS )
The purpose of a global stability analysis is to investigate
the model behaviour well away from equilibrium. Then we have to

consider the non-linear functions in more detail. Typical ques-

- tions to address are:

production at high values of DP/PO

(1) under which conditions will the non-linearities be

strong enough to contain the system and produce a limit

cycle?
(i1) can there be more than one limit cycle?
(fiii which parameters detezmine’the form of the limit cycle
» » ih various regions of phase-space?, and ‘
(iv) how fast is the limit cycle approached by a trajéctory

starting at a point away from the attractor?

v

We shall not concern ourselves with all of these problems in

this paper. We would like to discuss, however, how the form of

‘the limit cycle is controlled by certain éharacteristic parame-

ters of the two non-linear functions CUF and MDP. In particular
we shall investigate the significance of the assumption of a
maximum to the multiplier on caéital order rate from desired
(see figure 1). .
"We first notice that the ratio of desired production to

potential output DP/PO in the base case varies along the limit

14
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cyc¢le from less than 0.3 during‘an economic downturn to more than
2.8 in the recovery phase. The turning points of the 1limit cycle
are therefore controlled by the behaviour of the table functions
in the two regions DP/PO — 0 and DP/PO > 2. As showh in figure 6,
we have introduced the following 4 parameters to describe this
behaviout (the slope of the capifal utilizafion factor CUF for
DP/PO — 0 is assumed to be 1):
a the highest attainable capital utilization factor.
By definition a > 1, base case value a = 1,20,

b the value of the multiplier from desired production on
c#pital order rate for DP/PO = 2. By definition b > 1, base
‘case value b = 4.0.

G the slope of the function MDP for DP/PO > 2. Base case
value G = 6. '

0. Base case

Y the slope of the function MDP for DP/PO

value v = 0.5, -

Figure 6

Note that since the independent v#riable 2 = DP/PO in the
two non-linear functions is expressedvgy eq. (3a), the relation z
= constant is represented by a set of straight lines in the
phase-plane. Figure 7 shows the lines corresponding to z = 0.3,
0.6, 1 and 2, respectively. With piecewise linear table functions
as in our DYNAMO-model, and with a common independent variable

for CUF and MDP, the phase-plane thus divides into segments
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within which the system has a linear representation., This facili-

tates the global analysis enormously.

Figure 7

To qontinue our analysis we determine some of the isoclines of
the problem. An isocline is a curveiin phase—sp;ce along which
all trajectoties have a given slope (direction). The 0O-isocline,
for instance, connects points in which dvoc/dt = 0, so that all
solutions to our equations of motion (regardless of the starting
point) proceed horizontélly in phase-space. By solving the condi-

tion duoC/dt = 0 for z < .6, we find the 0-isocline in this

region to be the straight horizontal line

uocC < Y DDC°COR
DPG ALC~-y *COR

Above this line duocC/dt is negative, and below the line
duoc/dt is positive. On both sides, the trajectories are thus
attracted py the 0-isocline which like a narrow gorge guides them
towards the bottom of economic depression. The position of the 0-
isocline controls the smallest value of unfilled orders for
capital attained during a cycle. Of the‘four table function
parameters a, b, G and v, only v affects this minimum. The higher
the value of v (0 < ¢ ? 1), the higher the minimum backlog of
capital orders will be, and the easier it will be to initiate a
new upswing.

The ~-isocline connects points in phase space in which

dpC/dt = 0, so that the trajectories are vertical. For DP/PO > 2,
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111 the =-isocline is found to be the vertical- line

PC _ COR*ALC
DPG  a'ALC-COR

dn both sides of this line, the slopes of the trajectories
point away from it. As a mountain ridge, the =-isocline thus
sepér#tes the phase plane into two regions. A tréjectory starting:
to the left of the w—isociine wili never reach the limit cycle.
The proéuction capital will be too low to satisfy the orders for
goods, reinvestments are impossible, and the capital sector will
inevitably collapse.

The «-isocline sets a lower limit to the production capital
during a Kondratieff-cycle. 6f the four table function parame-
ters, this minimum is determined only by a, the maximum capital
utilization factor. As one would intuitively expect, the greater
the ability to increase capitél utilization beyond one, the lower
the minimal prodhction capital can be.

The phase-portrait of figure 7 also shows the «-isocline
for z < 1 as well as the -l-isocline. The latter connects points
in which (duoc/dt)/(dPC/dt) = -1 and coincides with the z=1 line.
Finally for z > 2 and G= 0, we have calculated the slope of a

trajectory at an ordinary point in phase-plane to be

duoC _ (b°COR-a'ALC) (PC/DPG) + COR*ALC
dPC ~ (a“"ALC-COR) (PC/DPG)~COR'ALC

Establishing the isoclines allows us to consider whether
variations in the non-linear functions can create new bifurcation

points in which for instance exponential growth or decline re-
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place the limit cycle behaviour. One might expect, for instance,
that small values of a and 7y could cause the trajectories to
shoot underneath the left =-isocline into the region of economic
collapse. Under such conditions, the economy would not be able to
initiate a new upswing, once a'downtutn has started. By simu-
lating with thé model we have found this to be the case for
instance for a = 1.10 and y = 0.1. .

A second possibility is that the capital build up during
the initial phases of an upswing continues to accelerate and
never falls back across the line z = 2 in phase~plane. Under
these conditions, desired production continues to be larger than
twice the potential output, and sustained exponential growth
results. Both analytically, and by experimenting with the model
we have found that this can occur if the slope G of the table

function MDP exceeds the value

. ppc[2a-aLc- (b+1)cor]

COR(COR-DDC)

It is clear from the above result that the threshold for the
bifurcation from limit cycle behaviour to sustained growth can be
relatively low if delivery delay for capital is low, if capital/
output-ratio is high, and if at the same time the parameter b in
the table function for the multiplier MDf is high. Even G = 0
‘'will not always be sufficient to contain the development and
produce a limit cycle, namely if COR/ALC > 2a/(b+1). The possi-~
bility of -explosive behaviours sheds some light on the signifi-
cance of the saturation in the multiplier on capital order rate

from desired production.
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THE;. LOCAL FLOW OF TRAJECTORIES

By means of a local stability analysis we shall now examine
the convergence or divergence of nearby tréjectories in phase-
plane. For a stable system,‘the solutions of the equations of
motion obtained with two neighbouring starting points converge
over time. th a chaotic system, two trajectoriés started infini-
tesimally apart generally diverge. Finally, in the presence of a
limit cycle, the trajectories converge towards the limit cycle,
but along the attractor they tend to maintain a constant separa-
tion in time. ,

To describe the local stability properties of our non-linear

system we again use the Jacobian (or functional) matrix, this

time for a general point in the phase-pléne

Pylx,y)  Pylx,y)

J(x,y) =

= Oz (xry)  Quix,y)
with '

af d
Pptxy) = 22 2302 1 e
‘ x 3f 3z '
Pi(x:Y) “cazay ! (6)
L9z)  x2g 0z flz) _x of 0z

0z (xy) < v 3z ¥x c c 9z ax (M

and

opix,y) =222 X222 (8)
’ .

As before f(i) and g(z) represent the non-linear functions

for the capital utilization factor CUF and the multiplier from
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desired ptoduction-ﬂDP, respectiveiy. af/dz andvbg/az denote the
derivatives of these functions with respect to their :common
independent variable z s DP/PO. 3z/3x and 9z/3dy denote the par-
tial derivatives of z with respectlto the two normalized state
variables x = PC/DPG and y = UOC/DPG.

Mt and e*t of the locally linearized equa-

The solutiohs e
tions of motion can now be obtained from the eigenvalues 1,(x,y)
and A_(x,y) of the Jacobian matrix. These eigenvalues are known
as Lyapunov exponentslo'll. Since for an autonomous system tra-
jectories do not cross (except at éingulat points such as the
equilibrium point), the two eigenvalues must both be real. A,
then denotes the larger of the eigenvalues. As indicated by the
notation A (x,y) and A_(x,y), the Lyapunov exponents will vary
along a trajectory.

The solution corresponding to the larger of the two Lyapunov

exponents will always dominate in the long run. If Ay(x,y) is

negative, the trajectories locally converge. Along a limit cycle,

the largest Lyapunov exponent is zero on average, while at the

same time the trace of the Jacobian matrix Trd = Py + Qp = A 44
is negative. Trd is equal to the divergence of the vector field
{P,Ql, and requiring the trace of the Jacobian matrix to be nega-
tive is equivalent to saying that there shall be a general
contraction in phase-space.

With Py, g;, Qy and Q§ as -given by Eé. (5-8), the eigenva-
lues of the two dimensional Jacobian maxtrix can again be found
from’(4). If we introduce two new table functions DCUF = af(z)/dz
and DMDP = 3ag(z)/32z to represent tﬁe slopes of the table func-
tions CUF = f(z) and MDP = g(z) it is a simple matter to con-
struct a DYNAMO-program which will calculate the Lyapunov expo-

nents along the trajectory during a simulation.
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The result is shown in figure 8. Here we have plotted the
development of the normalized state variable x =" PC/DPG to-
gether with.two curves.represéhting recpectively .t and
(A,+2_)t. From the slope’of the first of these two curves we can
read the average vglue of the larger of the two Lyapunov expo-
nents. From the slope of the second curve we can read the average
sum of the two eigenvalues l+#x_ which also gives the divergence
of the vector field {P,Qg.lt is seen that in average A, = 0 and

A, + A_ < 0 in agreement with the afore mentioned characteristic

of a limit cycle.

Figure 8

CHAOTIC BEHAVIOUR »

Chaos? denotes a distinct mode of behaviour in the same way
‘exponential growth"and ‘damped oscillations' are characteristic
behaviour modes of dynamical systems. Chaos differs from these
other modes of behaviour by the fact that it can occur only in
non-linear systems. Chaotic behaviour can therefore not be under-
stood by generalization of concepts from linear systéms theory.

Chaos may be characterized as a beha?iour which is bounded
in state space and seems to have a certaih recurrence. Each swing
is uniéue, however, the system never repeats itself, and the true
period is‘infinite. Chaos is also characferized by the fact that.
while the trace of the Jacobian matrix still is negative (general:
contraction in state space),.the highest real value for the’

Lyapunov exponents is positive. There is therefore an exponential
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divergence in one direction. This gives rise to a sensitivity
both to the initial conditions and to the accuracy of the numeri-
cal calculation, not encountered for stable systems. For a
chaotic system one can therefore not make point predictions,
neither with a DYNAMO-model nor with any other numerical techni-
que, Nevertheleés. DYNAMO can often be used to get an impression
of the general behaviour of a chaotic system. '

Chaos can not occur in continuous, autonomous systems unless
there are three or more state variables. However, chaotic beha-
viour can result, if a two-dimensional system as our simple
Kondratieff-wave model is driven exogenously for instance, with a
vsine—wavels.

To illustrate this possibility, we introduce a small sinus~
oidal variation in the desired production of goods, represented

in DYNAMO-formulation by
DPG.K = 1+AMP*COS(6.283*TIME.K/PER).

Here 6.283 = 2n, PER = 5 years is the period of the exoge-

nous excitation, and the parameter AMP is the amplitude of the

excitation. The above modulation of the desired production of -

goods can be thought of as representing the business~cycle, and
we are thus considering the effgcts that the business cycle may
have upon the Kondratieff-wave. »

As shown in the phase-plots of figures 9 and 106, as the
ampiitude AMP of the sinusoidal disturbance is increased from 0
to 20% of the mean value of DPG, the 1imit cycle of the undistor-
fed Kondratieff-wave model is transformed through a series of
period doublings into chaos. Changing AMP thus causes the system

to go through a series of bifurcations each of which'qualitative—
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ly alters the characteristic mode ofibehaviour. Beyond the thres-
hold for chaos, we héve found' windows in which odd multipla of
the fundamental period céﬁ be observed.

Figure 11 sﬂows the development in time of the normalized
state variables x = PC/DPG and y =vUOC/DPGAwith chaotic beha-
viour. Note.the irregular variation for instance in the peaks of
the production capital. Finally figure 12 shows the same variab-
les plotted together with A,t and (A +A_)t. On average i, is now
clearly positive, indicéting the model's sensitivity to the ini-

tial conditions.

Figure 9

Figure 10
?igure 11
Figure 12

CONCLUSION

We have shown how a relatively simple System Dynamics model
developed to simulate real world behavidur can exhibit a varity
of complex dynamic modes depending upon the values of various
parameters. Four different types of bifurcations have been iden-
tified and we have shown that the model can give chaotic beha-
viour if driven exogenously. Even for a model with two level
variables and two table functions, the number of significant
parameters can be.so high that one can hardly hope to understand
the dynamics of the model from simulation experiments alone.
Under these conditions, application of various methods of formal

stability analysis can be very helpful.

23



ACKNOWLEDGEMENTS

The linear and global stability analyses of the one-sector
Kondratieff model were intially performed during a leave of
absence at Dartmouth College in the summér of 1982. Steen Rasmus-
sen and Erik Mosekilde would like to express their gratitude to
the staff of the Resource Policy Center for a very pleasant and
inspiring stay.

Our preliminary investigations of chaotic behaviour weré
performed on the‘analog—digital computer MOSES, developed by Kaj
Jensen at the Technical University of Denmark. MOSES is a modular
simulator, where each element in a System Dynamics flow-diagram
is represented by a 2x4vinéh box containing’ a microprocessor and
suitable controls. By connecting'différent boxes through a perma-
nent switch-board, any sbD-model can be set-up. During this pro-
cqu and during subsequent parameter variations, the model is
automatically simulated 50 times per second, and the results are
continuously shown on a colour TV-screen. The advantage of this
system is that one can investigate alternative model formulations
and scan through a parameter spaée much faster than with any
digital computer. We would like to thank Kaj Jensen for the
opportunity to use the MOSES system.

Finally we would like to thank Jan Freyland, Uhiversity of
Oslo for pointing out to us an easy way to calculate Lyapunov

exponents for low dimensional systems.

24

115

H2 > O P A > > 0 > w2 0O AW E Z

mﬁnﬂu—-—a’
- Our analysis of the simplified Kondratieff-wave model
heavily rests upon details in the model formulation. For this

reason we shall reproduce the complete DYNAMO-program for the

model here:

»

ONE SECTOR KONDRATIEFF MODEL
PC.K=PC.J+(DT) (CAR.JK~-DR.JK)

PC=PCI

PCI=(DPG*COR*ALC)/ (ALC-COR)
DR.KL=PC.K/ALC

ALC=20 years

CAR.KL=PR.K-DPG

DPG=1.0 unit/year

UOC .K=UOC.J+(DT) (OR.JK~CAR.JK)
UOC=(PCI*DDC) /ALC
OR.KL=(PC.K/ALC) *MDP.K

PO.K=PC.K/COR

COR=6 years

PK.K=PO.K*CUF .K

CUF .K=TABHL (CUFT,DP.K/PO.K,0,2,.2)
CUFT=0/.2/.4/.6/.8/1/1.1/1.15/1.18/1.19/1.20
DP.K={UOC.K/DDC) +DPG

DDC=3 years

MDP .K=TABHL (MDPT,DP.K/PO.K, 0,2, .2)
MDPT =0/.1/.2/.3/.5/%1/2/3/3.5/3.9/4.0
SPEC DT=,2

With the above specification the model is started in equili-

brium. In the runs we have performed, either the model has been
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started out of equilibrium by specifying particular initial va-

lues to the two state vaiiables, the model has been excited by a

step input to desired production, or the model has been driven by

a small amplitude sinusoidal variation in the desired production

of goods.
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Eigure captions

Figure 1. System Dynamics fiow-diagtam for a simplified one-
sector Kondratieff-wave model.

Figure 2, Simulation results for the simplified Kondratieff-wave
model with a capital/output-ratio of COR=6., The model exhibits a
limit cycle behaviour. (a) time-qevelopment, and (b) phase-plot.
Figure 3, Similar results as in figure 2 only with a
capital/output-ratio of COR=4. The model now exhibits damped

oscillations towards a stable equilibrium.

The parameters « and p are defined as the slopes of
in the

Figure 4.
the two table functions CUF and MDP, respectively,
equilibrium point (1,1).

the simplified

FPigure 5. Neutral stability curves for

Kondratieff-wave model: (a) with ¢ as a parameter and, fixed
values for ALC and DDC, and (b) with DDC as a parameter and fixed
values for a and AIC.

Pigure 6. This figure defines the four parameters a, b, G and ¢
used in the global stability analysis of the Kondratieff-wave

model.
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Figure 7. Phase-portrait of the Rondratieff-wave model. The
portrait shows the unstable equ111brium poxnt the limit cycle
attractor, and a set of different isoclines with their
corresponding trajectory tangents. The figure also shows how the
phase-space is divided into segments within whiéh the system is
iineér.

Figure-s. Simulation results obtained with normal parameter

‘values. Besideé the development of the two normalized state

variables PC/DBG and UOC/DPG, we have also plotted the functions

At and (A +a_)t. Ay anq A_ are the Lyapunov exponents of the

problem. In average over the limit cycle 1,=0 and A,+A_ < 0,
Figure 9. With a 5.0% sinusoidal modulation of the desired
production of dbods, the Kondratieff-wave model shows period
doubling.
Figure 10. With 20% modulation of the desired production of
goods, the Rondratieff-wave model shows chaotic behaviour.
(Phase-plot corresponding to the time-plot of figure 11).

Figure 11. wWith 20% modulation of the desired production of
goods, the Kondratieff-wave model shows chaotic behaviour.
Figure 12. Same results as in figure 8 only with a 10%
modulation in the desired production of goods. The system is now
chaotic, and the larger Lyapunov exponent is positive in

average.
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