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Abstract

There is a conspicuous gap in the literature about feedback and
circular causality between intuitive statements about shifts in loop
dominance and precise statements about how to define and detect such
important nonlinear phenomena. This paper provides a consistent, rigorous,
and useful set of definitions of loop polarities, dominant polarity, shift
in dominant polarity, and shift in loop doainance, and illustrates their
application in a range of system dynamics models.

Consistent with the usual intuitive definitions, the polarity of a
first-order feedback loop involving a level x and a single inflow X is
defined to be the sign of d%/dx. Loop polarity is shown to depend upon

.the sign of parameters not usually considered part of the loop itself.This

expression for loop polarity is then applied to multi-loop first-order
systems to define the dominant polarity of such systems. All positive
loops with gain less than one, such as econoaic multipliers, are shown to
be multi~loop systems with dominant negative polarity. The shifts in loop
dominance that occur in nonlinear systems arise naturally as changes in the
sign of the dominant polarity. Examples applying the notfon of dominant
polarity reveal a useful geometric characterization of shifts.in loop
dominance in nonlinear first-order systems.

The concepts developed in the paper are then applied to simple
higher-order nonlinear feedback systems. The final application to a
bifurcating system suggests that all bifurcations in continuous systems can
be understood as consequences of shifts in loop dominance at equilibrium
points. :
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Introduction

Underlying the formal, quantitative néthods of system dynamics is the
goal of understanding how the feedback structure of a system contributes to
its dynamic bch;vlor. Understandings are.captured and conmunicated in
terms -of stocks and flows, the polarities of feedback loops interconnecting
them, and shifts lnvthe significance or dominance of various loops.
'Hovever, there 1s a conspicuous gap in our literature between intuitive
statements about shifts in loop dominance and precise statements about how

we define and detect such important nonlinear phenomena.

This fnvestigation is an attempt to bridge‘phat gap. In the effort to
construct formal definitions of shifts in loop dominance, it became clear
that our common definitions of loop polarities were not sufficiently
precise. There is an underlying unease in our own field and in the
cybernetics literature that we do not really know what a positive loop is.
Ashby, for example, was sufficiently bothered by the goal-seeking behavior
of the discrete positive loop Xeop ™ ytlz, Yeer * xt/2 ghat he used {t to
support his claim of the "inadequacy" of feedback as a tool for
underltundlﬁg complex dynamic systems (Ashby 1956, p. 81). ‘To avold such
anonnlies,.sqne define a loop to be positive if it gives "divergent

behavior." Graham (1977) finds problems with that characterization and
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suggests instead that a loop be called positive Lf its open-loop steady
state gain is greater than one. Richmond delightfully exposed our
confusions by describing a well-meaning professor trying to explain to a
concerned student: "Positive loops are ... er, well, they give rise to
éxponentlal growth ... or collapse .;.‘but iny under certain conditions
..+ under other conditions they Sehaie like negative feedback loops..." He
concluded that the nicest way out of the confusion is to define a positive
loop to be a goal-seeking loop whose goal continually “runs off in the
direction of the search" (Richmond 1980). Some; of course, ignore all

the subtleties and obtain loop polarities simpiy by counting negative links

(Richardson and Pugh 1981).

We begin then with a tighter, more formal definition of the polarity
of a feedback loop. Our focus, however, is on the concept of loop
dominance and the phenomenon of shifts in loop dominance in multi-loop

nonlinear systems.

Rigorous Definition of Loop Polarity

Every dynamically slgnlfiéant feedback- loop in a system contains at
least one level (accumulation or integratlon).*l* We shall use that
principle to formulate ; rigorous definition of the polarity of a feedback
loop. (The development will be in.terns of continuous systems. A similar

development holds for feedback processes couched in discrete terms,

provided the principle of "an accumulation in every loqpr is maintained.)

Congider a single feedback loop involving a single level x and an
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’ . *2%
inflow rate % = dx/dt.

Define the polarity of the feedback loop linking the inflow rate %
and the level x to be .

Islgn(%é) {= slgn(dxldt)]

This formal definition is consistent with our more intuitive characteriz-'
ations: "dx" can be thought of as "a small cﬂgnge fn  x" which is traced
around the 1oop,un;il it results in "a small change dk" fin the inflow rate
% = dx/dt, If the change d% is in the same direction as the change dx,
then they.ﬂave the same sign. Since % here is. an {nflow and thus is
added t§ ché level, the loop reinforces. the initial change and is thus a
positive loop; In such a case, sign(dk/dx) is also positive, so the formal
definition is consistent with the intuitive one. If the resulting change
in the toflow fate is in the opposite direction to the change dx, then
sign(dk/dx) is negative and the polarity of thé loop is negative by both
our intuitive and formal definitions. The Eorhél definition is equivalent
to defining the polarity of a first-order feedback loop to be the sign of

*
the alope of its rate-versus-level curve, 3

To exteﬁd the definition to feedback loops in which i. is an outflow
rate, we merely havevto agree to attach a negative sign to the expression
for % 1f it represents an outflow. Then the definition above holds for
all loops involving a single level x and a. single inflow, outflow, or net
rate . The. first few examples that follow are véty familiar; they are
intended to establish some confidence in this formal definition of loop

polarity before we use it to derive some less familiar results.
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Example (1): Exponential growth or decay.
Let % = bx, where b is a constant. Then the polarity of the
feedback loop is

9&5&2) = gign(b),

sign(%) = gign( 4

which is positive 1f b 1is positive and negative i{f b is

negative, :
The result makes {ntuitive sense, as may be seen by 1nterpretln# X as a
net rate such as net population growth. If births exceéd deaths, the
coefficient b is posltlv; and the loop produces exponential population
growth. Similarly, if deaths exceed births, b is negative and the loop
exhibits exponential decay behavior. The usual case is. b > 0, and that
prompts us to call all such first-order net-rate formulations positive
loops. However, the polarity of such a’loop in fact depends on a parameter
whose slgn‘ls seé by environmental conditions outside the loop. Without

°

knowledge of the sign of b, _the polarity of the loop represented by X =

kG x
bx -is undetermined. 4

Example (2): Exponential adjustment.to a goal,

(x* - x)
T ’

Let % = where x* and T are constants.

Loop polarity = sign(%%) = slgn(:%)

which is negative if the time constant T 1is positive, and

positive if T 18 negative.
In applications of this structure, as in exponential smoothing, the time
congtant T 1is slways positive, so the loop is always negative. When x* =

0, this formulation reduces to example (li with b = -1/T < 0: again, a
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negative loop by both formal and. intutive definftions. In each of these
cases, the formal definition of loop polarity behaves appropriately but

ylelds no new insights. Cases involving more than one loop provide more

interesting testlné ground.

Multi-Loop Structures: Loop Dominance

The formal definition of loop polarity leads to a precise concept of
loop dominance In simple systems. Consider a first-order system contain;
ing several feedback loops and the level variable x.

Let % represent the net increase in x.
Define the dominant polarity of the first-order system to be

sign(%)

This simple extensiou of the formal definfition of loop polarity to multi-
loop first-order systems leads to new understandlqgs of some familiar
structures and a precise statement of what is meant by a shift in loop
dominance. The examples below illustrate results for both linear and

nonlinear systems.

Example (3): Logistic growth.

Let % = ax - bxz, ad>b>o0.

This familiar structuré can be thought of as a pair of feedback
loops, one positive and one negative. One could rewrite the
equation, for example, as

% = (a - bx) x,
constdering the factor (a - bx) as a multiplier representing an
endogenously changing coefficient of x. If we took each factor

- a8 & separate first-order system, we would have

il - x and iz = a - bx.
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The definition of loop polarity produces the expected results:
Polarity of loop | = sign(d*l/dx) = gign(l) = +
Polarity of loop 2 = slgn(dizldx) = gign(~b) = -

Since dk/dx = a ~ 2bx, the dominant polarity of this nonlinear
system varies with the level x:

Dominant polarity = sign(dk/dx)

Y+ 1f x < al2b,
= sign(a - 2bx) = \

- 1f x> a/2b.

Thus the dominant polarity in this two-loop system shifts froa
positive to negative as the level variable x grows. The ghift in
dominant polarity sugests the following formal definition:

In a first-order system with level x and net rate of change X, a
shift in loop dominance is said to occur if and when dk/dx

changes sign, that {s, when the dominant polarity of the system
changes, '

In the logistic equation, a shift in l&op aoninance occurs when the level
reaches half of its maximum value, the polqc of inflection fn the logistic
curve. The shift in loop dominance is a consequence of the nonlinearity of
k: in any first-order system containing any number of loops, if X 1s a

linear function of x, dk/dx 1s constant and can not change slgn.*s*

It should be noted that this definition does not capture all possible
shifts in loop dominance —-— only those that involve a change in do-inant
polarity. Presumably, it is entirely possible for a system to show a shift
in dominance between two negative loops or two positive loops. Such a

shift in dominance between loops of the same polarity would not show up as
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a change in dominant polarity and would have to be defined and detected by

*6
other means.

Example (4): General nonlinear sigmoid growth structure.
Let %k = xf(x), f(x) > 0.

A suggestive example is the business construction formulation in
‘several simple urban models (Alfeld & Graham 1976) in which

R BC.KL = BCN * BS.K * BLM.K,

where BC = business construction (structures/year),
BCN = business construction normal (fraction/year),
‘BS = business structures,
= business land multiplier (dimensionless),

and - BLM

which is a function of BS.

" ‘Dominant polarity = sign(dk/dx)

= sign[f(x) + x£'(x)]

. £(x)
/ + if f(x) > - -
\ , f(x)
- Af f(x) <= 3

This result has a simple geometric interpretation. f’(x) represents the
slope of the tangent to the graph of y = f(x). at the point (x,£(x)). On
the same graph the term f(x)/x represents the slope of the line from the
origin to the point (x,f(x)). Taken together, these considerations show:
" A nonlinear first-order feedback system of the form X = x f(x)

shifts loop dominance at the point on the graph of y = f(x) where

the slope of the tangent is the negative of the slope of the line

from the origin. .
If such a poinf exists (that is, if loop dominance does indeed shift in the

system), these two lines would thus form the diagonals of a rectangle with
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sides parallel to the x- and y—axes.l Consequently, in a simple two-loop
system the point of shifting lbop dominance is relatively easy to pick out
visually from a table function for f(x). Fipure 1| shows the determina—~
tion of the point of shifting loop dominance for the'buginess construction

example cited above.

FRACTIONAL RATE of CHANGE

LeveL '

Figure 1: Locating on the graph of y = f(x) the point of
shifting loop dominance In the first-order sigmoid growth
system %k = xf(x). : .

The criterion just derived applies neatly to the logistic equation as
a special case. For % = ax - bxz = (a~bx)x, the function f(x) is a -
bx, which is a straight line from (0,a) to (a/b,0). Theréfore, the curve
itself becomes one of the diagonals of the rectangle’tyat determine the
point of shifting loop dominance, and the other diagonal is the line that

runs from (0,0) to (a/b,aj. The point of shifting loop dominance is thus
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again found to be x = a/2b, since the diagonélé of a rectangle bisect each

other.

An analogous‘iesult, with an even slmplervgeomettic interpretation,
holds for nonlinear systems of the form % = (** - x)/£(x), f(x) > 0. Iﬁ
such systems, x* represents some goal state for the.level variable‘x, and

f(x) represents a variable adjustment time dependent on the level.
Examples of such formulations include pollution absorption in World
Dynamics (Forrester 1971) and food regeneration in the KAIBAB model
(Goodman 1974, Roberts et al.1982). IIn'the former x* would be zero
since the absorption rate is simply the outflow fron:thg pollution level.]
In these cases, a computation analogous to example (4)*7* shows that loop
doafnance shifts when

The geometric interpretation of this condition follows by noting that
f(x)/(x-x*) can be viewed as the slope of the line joining (x,£(x)) and
(x*,0). Loop domirance in such a system shifts when the slope of the
tangent to the graph of y = f(x) equals the slope of the line from the
point of tadngency to the point (x*,0). As an example, Figure 2 shows the
tablevfunctlon for pollution absorption time from Forrester (1971). The
"tangent 1ine™ shown in the figure appeared in the original without
explanation. Now we know its signlfléance: gince x* = 0 here the line
from (0,0) tangent to the graph determines the location of the shift in
loop dominance of this system. Because Forrester’s table function

formulation lies along this line for 10 € POLR £ 20, the shift {n loop

Dominant Polarity

dominance occurs not at a point but err an interval. For POLR < 10, the
negative loop dominates and the system is capable of absorbing increases in i
pollution; for POLR > 20, the positive -loop dominates and the system has
the capability of exhibiting runaway pollution increases for constant or
even declining rates of pollution generation. In the interval [10,20]
neither loop dominates: when the pollution ratio falls In this range the

system is essentially open-loop.

»
POLATT | |- ‘l i -
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1" :
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Figure 2: Table functlon for pollution absorption time from
Forrester (1971), showing the line indicating the interval
over which loop dominance shifts from negative to positive as
the pollution level grows. :
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Example (5): "Positive loops with gain less than one."
A classic example of this structure is the consumption multiplier
(Samuelson 1939, Low 1980), shown in Figure 3. In the formulation

of the loop used here, average income x 1is represented as an
exponential smooth of GNP (Y), so

Y - Xy
k " C—ﬂf——).

Since Y =G + C =G + cx,

% = (G + ¢cx) - x

s0

&‘n
%o
[l

&

Therefore,

Dominant polarity = sign(dk/dx)

c - l) -/

= sign( T

-

Average
0“%”" Income
(x)
Rate of Change
of Average Consumption
Income (%) (c)

+ \ Propensity

to Consume

Averaging (c)
Time (T) GNP
(Y)
\ Government
Expenditures
(G)

Flgure 3: The consumption multiplier: for 0 < c < 1, a first-
order system with negative dominant polarity.
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Since the propensity to consume (c) must necessarily be a fraction less

than one, we conclude that dominant polarity of the multiplier “loop"” 1s°

always nepative.

The coefficient ¢ in this system is commonly referred to as the

open—loop stcady-state gain or open—loop step gain of the positive loop

connecting GNP (Y), consumption (C), and average fincome (x). The
multiplier structure i{s thus usually characterized as a positive loop with
gain less than one. From the point of view of loop domlnénce and dominant
polarity, however, it is clearly seen to be a structure consisting of two
loops, one positive and one negative, In which, for all sensible parameter
values (0 < ¢ < 1), the nepative polarity always dominates: A similar
structure but higher-order figures prominently in the market growth model

in Forrester (1968a) (see pp.18-20).

The goal-seeklng behavior that such systems display is thus no
surprise. It is intuitively reasonable that a system witﬁ dominant negative
polarity should be goal-seeking. Furthermore, it is evident that one need
not invoke an additional concept, suchvas,"géln,"vto,explqln the apparent
anomaly of “goal-seeking positive loops." The nonlinear notion of loop
dominance, which is part of the system dynamicist’s everyday

stock-in-trade, suffices admirably in these special linear cases.

More Complex Systems

The goal of developing rigorous definitions of loop polarity, dominant

polarity, and shift in loop dominance is to be able to say something
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significant about multi-loop nonlinear system; containing a number of
different rates, levels, and auxlllarieg. Tak{né auxiliaries first as the
easiest to handle, let us make the obvious formal definition of the
polarity of a 315£: 4 ‘

Let variable A directly influence variable B. Define the
polarity of the link from A to B to be

slgn(gg)

This definition is merely a formal statement patterned after our previous
definitions, which expresses the intultive notion of a change in A (dA)
resulting in a change in B (dB) in the same or the opposite direction.

Now suppose the rate % 1is linked to the level x through a sequence
of auxiliaries, x -—-> a, —-—=> a, e I a, -—> %k ===> x.

Repeated application of the chain rule for differentiation of composite

functions yields

ak _ %4y da, L 98, g
dx dx da da da
1 n-1 n

1t follows as a consequence that sign(dk/dx), the polarity of the feedback

loop formed by x, this sequence of auxiliaries, and % 1s the product of
the signs of the links in the loop, as we have in the past defined it. We
could have use such a computation in the analysis of the multiplier loop:

Since X = (Y - x)/T,

d% dy 1

dx (dx n T
dY dC 1
dc dx ~ D T
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o le-1 [since Y=C+1+G
T and C = cx]
c-1
- ezt

Ag*
as before.

The potentially more troublesome and more significant situation
involves loops of more than one level. To get a sense of the applicability

of these ideas to such systems, let us consider a familiar nonlinear system

containing two system states:

Example (6): The Lotka-Volterra predator-prey equations.
% = ax — bxy
y = -cy + dxy,

where x represents the prey population and y the predators.
Applying the definition of dominant polarity to each of these
equations independently, we find

;t if y < a/b
sign(dk/dx) = sign(a - by) = \ PRI afb,

. gt x < c/d
and sign(dy/dy) = sign(c = dx) = \ " x> el
In this situation, these expressions tell us the condlilons under which
each population’s behavior is dominéted by its own positive loop or
negative loop processes, that is, births or deaths. For the prey, the
positive loop dominates and the prey fourish as long as the predator

population is small (< a/b). For the predeators, the posftive loop comes

to dominate only when the prey populatlop-exceeds a certain critical size

O c/d).
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While these expressions for dominant polaflty about each of the levels
independently do not tell the whole story of the behavior of the system,.
they do strongly suggest that the system ought to oscillate. One could
reason as follows. Say the system starts with both populations small: x <
c/d, y < a/b. Then according to the above calculations, the x population
is dominated by its positive (births) loop,‘and the y population is
dominated by its negative (deaths) loop. Thus x should grow and y
should decline. If x grows to exceed c¢/d, the system experiences a
change in loop dominance: the y population comes to be dominated by its
positive (births) loop, so y ought to cease declining and start to rise.
‘Eventually, if y grows to exceed a/b, another shift in loop dominance
takes place: the x population comes to be dominated by its negative
(deaths) loop, so it ought to peak and begin declining. If x falls far
enough (< ¢/d), loop dominance for the 'y population again shifts to the
negative and the y population must start to decline.Eventually, y ought
to fall far enough to shift the dominant loop of the x population, causing
the prey to start to rise, and bringing us back to the start bf this
analysis to repeat the cycle. Figure élshows‘the recurring pattern of

dominant polarities in the behavior of this predator-prey system.

——

Population | Dominant polarity
x (prey) + + - I - = + = s
y (pred) - + |+ | - | - | I

Conditions | x < c/d | x > c/d | x > c/d

| | x < c/d 1 x<e/d | ...
| y<a/b]y<alb|y>alb]y>alb

y<a/b| ...

+ —— e 4

+ ————

Figure 4: Patterns of loop dominance about the individual levels
in the Lotka-Volterra equations.
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It should be emphasized that these computations of loop dominance tell
only part of the story about the behavior of the system. The major
negative loop in the system Is only fmplicitly being taken into account. It
is the mechanism that brings about the shifts. described above, but we did
not explicitly make use of its structure or polarity. To see what we
might be missing it is Instructive to consider what an eigenvalue aﬁalysls

of a linearized version of this system would look like:

x . f(x,y) . f(xo.yo) . fof XX

y] o [stxy) 8(x_,y.) L, & Y-y,
In the Lotka-Volterra system, the essential matrix is
f f a -~ byo —bxo

8. 8 dyo dxu- [

Thus in such a linearization our partial derivatives dx/dx and dy/dy
would appear (as £, and gy), but so would dk/dy and dy/dx (as fy
and g , respectively). By investigating dk/dx and djy/dy alone we are
ignoring terms off the main diagonal in the linearized state-space matrix.
It looks as if the potential for this development of the notion of dominant

polarity {s limited to to systems in which the off-diagonal terms are few

and far between, or are for some other reason not particularly significant.
AQR

In spite of that apparent limitatfon, we can apply 'these ideas to
higher-order feedback systems and learn something. To do so we first need

a rigorous definition of the polarity of a major loop. Consider a loop
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composed of levels Xis Xpy veey X connected 1in order: il ——> x —-—D iz
———> X, —_——D tes ===D L —-—D *l' Following the pattern of our previous

definitions,

Define the polarity of the major loop to be

sign(gfl dkz ko dkn ,
dx dx, dx, °°° dx *
n 1 2 n-1

Applied to the major loop in the Lotka-Volterra system, for example, this

definition states that its polarity is
dk dy .
sign(a; a%) = sign[(-bx)(dy)],

whtich is indeed negative, as it should be, since b, d, x, and y are all

greater than zero.

This definitfion. of the polarity of a major loop is consistent with,
and in fact depends upon, the principle of feedback systems that asserts
that rates and levels alternate around a loop (Forrester 1968b). It is
also consistent with our intuitive characterizations, for it amounts to
tracing arouﬂd the major loop the implications of a siall change in one of
the levels. Note that, when integrated ulth'fhe definition of the polarity
of a string of auxiliéries, this definition asserts that the polarity of a
feedback loop containing any number of rates, levels, and auxiliaries is

the product of the signs of the links in the loop.

In the development that follows, we shall need one other fact, a

‘theorem about the steady-state behavior of the smooth of an exponentially
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growing or declining variable. Say y(t) = yoegt, and let z(t) be an
exponential smooth of y(t). That is, % = (y - z)/T, for some time

) *}O*
constant T. Then in the steady-state,

z(t) = y(t).

.
1 +7Tg
That is to say, the smooth of y(t) 1is also growing (or declining) at the
same exponential rate g, but it "lags behind” by a factor of 1/(1+Tg).

This property can be used to simplify the computation of dominant polarity

in some higher-order systems, as the following extended example

demonstrates.

Example (7): The Salesmen Loop (Forrester 196Eb).

Consider the structure shown in Figure 5 in which the significant
equations are:

ds

ac " SH, Rate of change of salesmen
SH = (IS - S)/SAT, Salesmen hired

IS = B/SS, Indicated salesmen

B = DRA*RS, Budget

DRA = SMOOTH(DR,TAD), Delivety rate average

DR = BL/DD, Delivery rate
%%L = OB - DR, Rate of change of order backlog
OB = S*SE Orders booked

where SAT = Salesmen adjustment time (months)
S§S = Salesman salary ($/salesman/month)
RS = Revenue to sales ($/order)
TAD = Time to average orders (months)
DD = Delivery delay (months)
and ° SE = Sales effectiveness (orders/salesnan]month).
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‘Delivery
L '/Delay, DD

Backlog,

ZS :EEE BL
/ orders " Delivery
Sales Booked, Rate, DR
Effectiveness, 0B Yo Time to
SE | ) Average
S : Delivery
Rate, TAD

Salesmen,

+ - | belivery Rate /

Average, DRA

-, Salesmen
A Hired, SH

Salesmen

Ad justment
Time, SAT A

'619 Indicated Budget, B
Salesmen, ~ \

. //}( s
Salesman Revenue to

Salary, SS Sales, RS

Figure 5: The salesuen loop from Forrester (1968),

The system consists of a major positive loop and several minor

negative loops. The dominant polarity of the system can be determined from

the sign of d8/as:

ds ds ds®  SAT
1 (dIS
SAT 'dS n
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dis dB_ dDRA dDR dOB
dB dDRA dDR dOB dS

1
SAT

At this point we see that we can compute each of these terms from their
defining equations except dDRA/dDR and dDR/dOB. These are fractional
rates of change of exponential smooths. - As noted above, their magnitudes
depend upon the exponentfial rate of growth of.the system, which is in fact
what we are looking for in d$/dS. As feedback thinkers we are accustomed
to circular causality, but this is too much; we have to make an additional

assumption to proceed.

Let us ask what this expression for donlnant polarity becomes if and

when the system has reached some steady state of exponential growth or

~decline,

Let the system be growing or declining exponentially at the
fractional rate g. Then by the property of exponential smoothing
cited above,

(-9

DRA 1 dDR 1
dbR T+mog ™ dB " T+Dbs

Substituting these expressions and the simple derivative
calculations {n the (steady-state) equation for dominant polarity,

we find: :
ds 1,1 1 1
a5 = st ‘S5 ®S T+Tapg 1eobg O~ D

which may be rearranged in the pleasing form

RS SE

55 = (1 + SATg)(1 + TADg){1 + DDg).
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Because of the steady-state assumption, the dominant polarity we
are seeking is

sign(d$/ds) = sign(g),

where g 1s a solution of the above polynomial. If g is small
relative to the time constants SAT, TAD, and DD, as presumably
it would always be, then this equation may be written

ﬁs% = 1+ (SAT+TAD+DD) g + 0(g?)

% | + (SATHTAD+DD) g

S
where the higher order terms in g are dropped n because they
are insignificant. Thus ’

ds RS_SE 1
¢ SS l)(SAT+TAD+DD)

80 dominant polarity = stgn(gg) - stgn(Rsng - 1),

RS SE
LR P
\ RS SE .
£ = <

We have found that the doainant polarity of the salesman loop is
positive if a particular combination of parameters affecting the loop is
greater than 1. The dominant polarity is negative {f the comblﬁatlon of
parameters is less than . The pattlchlnr mix of parameters, RS*SE/SS,
is the open-loop steady-state gain, or the open—looﬁ etepigain, of the
system., We have thus conciudgd that:

The dominant polarity of the salesmen loop is positive if its

open~loop step gain is greater than one, and is negative if its
open~loop step gain is less than one.

S
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This is Graham’s suggestion for the definition of a positive loop (Graham
1977). It is interesting to note that the exponential smooths ana delays
in the salesmen loop do not affect its dominant polarity. 1In this system
they affect not whether the system grows or declines, but rather how
rapidly it moves in the direction that other parameters in the system

dictate. (For further {nvestigation of the salesmen loop, see Rahn (1982))

In contrast, in the following more complex structure, two particular
time constants do affect the dominant polarity of the system. The example
is also of interest because it extends somewhat the applicability of the

1/(14+Tg) property for smooths and delays.

Example (8): Corporate growth from.product development.

The structure shown in Figure 6 is the essence of the self-
regenerating process behind the growth of a product-driven company.

The major loop (the revenue loop) is positive, and the minor
loops are all negative.

To find the dominant polarity of the system, we compute:
P

D
dPD d

2
Tia
Ul

IR - CR) = gpi(CR + CPD - CR)

- dd (cpp) = -9 (BS._=_PD)

PD dPD"  PAT
1 dPS
PAT (dPD D

Tracing the chain of variables around with the chain rule,

dPs dPS _dAR dREV dPP

dPD - AR dREV dPP  dPD °’



Dominant Polarity ' ) 23 ];.68

/. e~ Obsolescence

Rate, OR

Inltlatlom K:\‘Completlon

Rate, IR ” Rate, CR
Products in

Q+ Development
PD

Products in

Product - ’ ’ .
Ad justment ' Completion Obsolescence t
Time, PAT Time, CT . Time, OT !
Products ' +
Supportable, Revenue,
T PS © REV Annual
/ \ \Revenue per
: / Product,
Annual R&D Average ’ RPP
“'Cost per Budget , .| Revenue '
Product in RDB AR
Development, \ -
CcPP \\\\
Fraction Time to Average
to R&D, RDF Revenue, TAR

Figure 6: Corporate product~development structure.

which may be conveniently written as

dPs dPS _dAR dREV dPP dOR dCR

dPD AR dREV dPP dOR dCR dPD’

[Note that the last three terms equal dPP/dPD.] This form of the
equation is nice because the terms that are not simple constants
ifnvolve exponential smooths or delays, enabling us to replace them
with terms of the form '1/(1+Tg) under the simplifying assumption
of steady state exponential behavior. Thus,

dPS _ RDF _1 1
dPD cep 1+tARg N °T Tiomg oT

" Substituting in above and rearranging slightly, we find

dPD. _ _1 (RDF RPP OT _ 1 .
FTT) PATC CPP CT 1+TARg T#oig ~ V)
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Under the siwplyfing assumption of steady-state exponential
growth, this expression equals the fractional growth rate g.
Setting it equal to g, multiplying through by various
denominators, and rearranging slightly, we obtain the following
pleasing polynomial in g, analogous to the one found for the
salesmen loop: )

RDF RPP OT
TCPP CT (1 + 0oTg) (1 + TARg) (1 fATg)

Again fignoring the higher order terms in the polynomial for g we
sec that

- (RDF RPP OT _ 1)¢ 1 )
CPP CT OT + TAR + AT

Thus, dominant polarity = slgn(%%) = gign(g)

- RDF RPP OT _
sign(-—-———cPP T 1).

Thus the dominant polarity of this product development system is

determined by the quantity

RDF_RPP OT
CPP CT

.

If it is greater than one the dominant polarity of the structure is
positive and corporate growth ensues; 1f it is less than one the dominant

polarity is negative and the company declines,

As promised, here the expression that determines the dominant polarity
of the system involves some time constants as well as proportionality

factors. The significance of each of these parameters for a healthy

company 18 clear. The greater the rat{o of revenue-to~development cost per
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product (RPP/CPP), and the greater fraction of;revenues the company sends
to R&D (RDF), the greater the development effort the company can afford,
leading to the prospect of a high continuing flow of new products into
production. The éxpression shows that long préduct-llfetlmes in the
marketplace (OT) also contribute to the growth_potentlgl of the company,
while long product development completion times (CT) threaten that
potential. It is worthwhile observing that the importance of these two
time constants in the growth potential of the company is derived here
without reference to corporate reputation or feedback effects of delivery
delays. In addition to these ugllfknown reputation effects, completion
times and opsolescence times figure direc;ly in the potential of the

positive, revenue-generating loop to dominate in this structure.

Bifurcations and Loop Dominance

A bifurcation i{s a sudden shift in the goal state of a continuous,
nonlinear system.*lz‘ It is natural to ask how shifts In loop dominance
relate to bifurcations. The following analysis of a well~known simple
example suggests that bifurcations occur at equilibrium points that aré
also points of shiftlﬁg loop dominance.

Example (9): Bifurcation and shifts in dominant polarity in a

first-order system.

Let % = xf(x) - bx.

For specifics, interpret x as a population (such as right whales
or passenger pigeons) and f(x) as its net birth rate factor.Let
b represent the fraction of the population harvested per year.

The dominant polarity of the system is
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sign(%%) = gign{f(x) + xf’(x) - b]

/ + if f(x) + xf'(x) > b
‘o if £(x) + xf°(x) < b.

This systen bifurcates if the net birth factor f(x) rises to a peak

before it declines to zero. Figure 7A shows such a graph for y = f(x);

Figure 7B shows the corresponding rate-versus-level graph for the net birth

rate’ xf(x).
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Figure 7: Graphs associated with the bifurcating system

X = xf(x) ~ bx.
A: Graph of y = f(x) Oy
B: Graphs of the rates xf(x) and bx. versus the

level x.
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If the harvesting rate equals the value labeled bl in Figure 7B, the

system seeks and maintains a stable equilibrium populatfon )¢ if x rises ;

above X1 the net rate xf(x) - bx is negative and x falls back to X3
and if. x - falls b;low X), the net rate xf(x) - bx 1is pesitive and x
rises back to X Note that the slope of the net birth rate curve y =
xf(x) 1is ﬁégatlve at x = x. Since that slope equals f£(x) + xf’(x),
that guarantees that the dominant polarity of the system in a neighborhood
of x = X is always negative. The system should be nicely stable and
goal-seeking around xl.

However, if the harvesting rate equals the value labeled b2 fn
Figure 7B, the equilibrium population X, is stable only if approached
from above. If the harvesting rate b were to rise at all above bz, or
if the population x were to fall a bit below Xy the goal state of the
system switches suddenly to zero. Thus x, and b2 determine a

bifurcation point of the system.

But x, and b2 also determine a point of shifting loop dominance in
the system. At that critical point, the slope of the net birth rate curve
momentarily equals the slope of the harvesting curve. More precisely, in a

neighborhood of Xy

if x> Xy,
fF(x) + xf’(x) - bz if x = Xys

> b2 if x < Xy

We see immediately that if b -_b2 the dominant polarity of the

170
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system shifts from négacivé to positive as x drops through the value

X The positive polarity for x < x, means a self-reinforcing decline in

27 2

x: since f(xz) is the maximum value of f(x), % = xf(x) - bx < 0 for

x < x,, Thus the system shows a sudden shift in goal state because {t

2
experiences a shift in dominant polarity from goal-seeking negative to

goal-divergent positive.

It is common to assert that as b {Increases through the bifurcation
point in this system, the goal state of the system suddenly shifts to zero.
However, that is not quite what happens. For b slightly bigger than bz,
or for b = b2 and x slightly less than Xy the system has positive
dominant polarity, and {ts net rate X is negative. Tﬁe system’s "goal"
is, for a time at least, negative infinity. As x drops more and more
precipitously, the system experiences another shift in dominant polarity,
from positive back to to negative. But here the goal of the negative
polarity system 18 no longer x = X, or xz;.but rather x = 0, It is ati
this second shift in dominant polarity as « declinés that it becomes

appropriate to say that the goal of the system shifts to zero.

To see that there are two points of shifting donlnaﬁt polarity in the
system given by %k = xf(x) - bx, consider Figure 8. Dominanf polarity
shifts when f(x) + xf’(x) -~ b changes sign, which in a continous system
fmplies f(x) + xf’(x) = b. Geometrically, that means that in this system
dominant polarity. changes when the slope of the tangent to tﬁe net birth
rate curve cquals the slope of the line representing the-ﬁarvestlng rate.

A visual check of the slopes in Figure 8 shows that
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infinity. Then éa x drops more and more‘iapldly the system eventually

Dominant Polarity

x < X, sa=)> glope of xf(x) < b ===> polarity negative;

x < x < Xy ===)> glope of xf(x) 5 b ===> polarity positive; . ) reaches the point where the slope of the tangent to y = xf(x) again
' Xy < x ===> sglope of xf(x) < b ===> polarity negative. equals the slope of the line y = bzx. At that point the dominant polarity
shifts back to negative, and, since % equals a negative number times x
::f‘AJ‘;_Vv‘ 1 :::z;'r“'_: : ""::‘A:""_': : in this range, the goal for x becomes zero. Without fts second shift in

- dominant polarity, this bifurcating system would not end up at a finite

goal,

y=xf (x)

Mindful of the dangers of generalizing from one example, I conjecture

RATERS

|
l
|
|
]
: that all instances of bifurcation in continuous systems result from shifts
in loop dominance. More precisely, it seems reasonable that all such

bifurcations occur at equilibrium points which are also points at which the

dominant polarlty can shift from negative to positive. The apparent sudden

I
l
|
[
|
|
[
|

° 3 Xa x Ky LsveEL
' ’ shift in goal state is a consequence of a shift tn dominant polarity.

'Figure 8: Illustration of the two points of shifting loop
dominance in the bifurcating system X = xf(x) = bx.
x, & x,: points of changing dominant polarity;

X, & X3 equilibrium potints. Summary and Conclusions

Shifts in loop dominance lie at the heart of significant feedback

The points indicated by X, and X, in Figure 8 are, along with x =
system dynamics. The concepts and definitions made more rigorous in this

'0, the possible equilibrium points of the system. At x = X, the
- o paper move in the direction of clarifying what we mean by such shifts. The

equilibrium is unstable, since it is in the interval of positive dominant ' ,
necessary first step in that direction is to develop rigorous and reliable

polarity. Any deviation in either direction from x = Xy is reinforced,
definftions of link and loop polarities and shifts in loop polarities. This

moving Xx away from x, at an increasing rate. At x =0 and x = X,
paper has suggested such a set of definitions. They have the desirable

the equilibria are stable, since both occur.in Intervals of dominant
. property that they are formal definitions with clear and immediate

negative polarity in which deviations from equilibrium are counteracted. .
: connections to the intuitive characterizations in common use.'?urthernore,

they result in several simple algebraic and geometric tests for determining

Thus in Figure 7, when the system experiences a bifurcation at b = b2 )
dominant polarities and shifts in dominance in simple systems.

and x = Xy, the goal state of the system actually shifts to negative
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The concept of dominant polarity developed here suggests the
possibility of linking three areas in the study of dynamic feedback
systems; First, dominant polarity bears a clear connection to the notion
of open-loop steadi;state gain. That connection takes all mystery away
f rom "goal—seeklﬁg positive loops." From the point of view of domlnant
polarity, "positive loops with gain less than one" are no more mysterious
than’ the structure and -behavior of the logistic equation. Both are
multi-loop systems {n which the negative polarity can dominate. In
positive loops with gain less than one, the negative polarity always
dominates. Second, the notion of dominant polarity aims in the directlon
of identifying dominant loops and shifts in loop dominance in nonlinear
systems. In that sense it is in the spirit, if not yet the significance,
of efforts to use eigenvalue elasticities and participation factors to
identify dominant loops (N. Forrester 1982). 'Third, there is the distinct
possibility of a rigorous understanding the phenomena of bifurcation and

perhaps even mathematical chaos in terms of shifts in loop dominance.

These connections to other ideas about dynamic syete&s suggest there
is reason to develop these nascent notions further. Yet there is one more
reason for a serfous pursuit of the ideas of dominant polarity and shifts
in loop'dpnlnance: in applied system dynamics work the concept of shifting
loop dominance is an easily communicated, intuitive idea. Shifts in loop
dominance and their implications for poiicy can be described and explained
in terms of non-quantitiative causal-loop diagrams. The ;oncept of loop
dominance becomes an important bridge between complex interactions in a

simulation model and the intuitions and understandings of people the

LN GEDe
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modeler hopes to influence. It may help us to move our more significant
quantitative advances, such as eigenvalue analyses, bifurcation theory and

chaotic systems, from the forefront of research to the arena of applicable

policy analysis.

NOTES

1. "The statement is a principle of feedback system dynamics.
It is also something of a tautology, however, because it can
be viewed as an implicit definfition of what is meant by the
phrase "dynamically significant,"

2, Define the rate of change % to be an Inflow to x |if %,
whatever its sign, {8 added x. That is, ¥ is an inflow if

T
x(T) = x +Sidc,
(o]
o

whether or not % fitself is positive or negative. Similarly,
X 1Is an outflow from x {f %, whatever its sign,.is
subtracted from x.

3. Nonetheless, in nonquantitative causal-loop diagrams, we often
know unambiguously the polarity of feedback loops. The signs
of the parameters are usually given by the words used to name
or describe the variables.

4. See Goodman (1974) or Alfeld & Graham (1976) for discussion
and examples of rate~versus-level curves.

5. Higher-~order linear systems also can not change loop
dominance, but this simple development of dominant polarity is
not sufficient to prove that fact. One way to justify it is
to appeal to eigenvalue analysis and participation matrices;
see N. Forrester (1982) for developments in the use of these
ideas.

6. One simple technique that ought to work with first-order
systems containing two loops of the same polarity is to change
one of the loops arbitrarily to the opposite polarity in the
expression for % and compute the shift in dominant polarity
as before. Then interpret the result as the pofnt of shifting
loop dominance between the two loops of the same polarity.
Presumably, a shift in loop dominance between two negative
loops means a change in the goal state of the system. ’



33

Dominant Polarity

7.

8.

10.

11.

12,

The computation is:

dominant polarity = slgn(dk/dx)_

] £(x)(-1) = (x*=x)E7(x) }
= gign} -
* 8“{ f(x)z

~ -

= gignf-f(x) + (x-xf)f'(x)l

PRI G ,ffx:.
(T O

ted in dY/dC,
Yy=C+1+G and we are only interes

i;::eexa-ple shows that we will have to work with glr:i:l
derivatives when we deal with more complex systenaill 2ont1nue
simplicity, both conceptual and typographical, I w ! P
to use the d notation, trusting that it will be clear
partial derivative 1s intended.

ifts in loop

i of dominant polarity reveals sh

:::i:::c:? however, which are not observahleE:: a:alz:e:lzid
tem, orts

linearized versions of a nonlinear sys

the strengths of eigenvalue analyses and dominant gol;:t:{f

concepts may bear more fruit than either approach by itself.

1f y(t) -y 8%, then the solution of the dlffergnttal

1l
equation for "z(t) 1s of the form

1 /T
!(t) - lﬂa '

y(t) + ke-t

where k is s cén.t-nc dependent on initial conditions.
Root-locus analysis shows that the polynomial
k= +T17,00 + T,8) « o o (+ 'rng_)

always has a real root g that passes from negative to
positive ss k 1increases through one.

: bifurcations, see
t system dynamics references to
A:::r:::e:l98§) and ;:on the Physical Sciences to the Social

Sciences: Proceedings of the 7th In;ernational Conference on
Systes Dynamics 1982).
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