-23~

Combined Multidimensional Simulation Language,
Database Manager and Sensitivity/Confidence Analysis Package
For System Dynamics Modeling

George A. Backus, President
Policy Assessment Corporation

Jeffrey S. Amlin, President
Systematic Solutions, Inc

ABSTRACT

A fast, interactive, large-scale, database-oriented simulation language
(LAMDA) for IBM compatible microcomputers has been developed for System
Dynamics' applications. Sophisticated output. features include
high-resolution graphics, full report generation capabilities with textual
explanation, and user defined screen menu options. An integrated
sensitivity/confidence package allows parameters or structures to be
evaluated as a function of time and as a function of all other parameters
for their impact on model results. Confidence intervals are determined
along with the time and circumstances where certain information is
critical. An integrated statistical package can be used to estimate model
parameters based on historical information or, in combination with the data
base, used to test model hypotheses and statistical inferences. LAMDA can
also interface with FORTRAN applications. Extensive dialogue capabilities
allow the model builder to make the model user—friendly and fit the
need/sophistication of the client.

LAMDA SIMULATION SOFTWARE SYSTEM

LAMDA -- Language for Advanced Modeling and Data Analysis —- is a general
purpose, structured simulation system that can be used for a variety of
multidimensional applications, including information management, simulation,
and mathematical modeling in business, engineering and the sciences. A
modified version called LAMDA-SIM was especially designed for System
Dynamics applications. (Backus 1985)

LAMDA is fast, interactive, database-oriented and transportable to all
IBM-compatible microcomputers. It can easily simulate models containing
over 32,000 variables.

LAMDA has sophisticated output features including character, medium- and
high~resolution color graphics which provide multivariable line plots,
histograms, and bar graphs with titles, labels and scaling. Plots do not
have to relate a variable to time but can relate one or more variables to
another. :

-4~

LAMDA provides complete report generation capabilities. Tabular output can
be formatted for column or row labels with explanatory text interspersed.
With LAMDA's logical expression capabilities, model results can be analysed
and the conclusions stated in prose rather than tables. The user can
interact with LAMDA via a dialogue rather than only through PLOT or PRINT
statements. The input or output of any model can be obtained from
user—-defined menu screens. Menus can present user choices through the
process of highlighting predefined options. Other menus can provide a
structured format for users to enter input in a manner specific to their
needs and desires. Tutorials and help screens can also easily be added to
any model. LAMDA itself has an on-line tutorial available whenever needed.
Additional output variables or equations can be mathematically defined
interactively in “rerun” mode. Input and output can also be put in to
"electronic spreadsheet” files for use with other popular programs.

LAMDA operates interchangeably between two modes: direct and indirect. 1In
the direct or command mode, LAMDA interactiveiy accepts a statement,
converts it to executable instructions and proceeds to the next statement.
In the indirect or compile mode, LAMDA compiles a group of statements called
procedures which may be executed later as a single unit. A procedure may be
called for execution by other procedures including itself. Procedures can
require arguments and contain local variables. From a limited view,
procedures can be thought of as DYNAMO macros which can call other macros.
Also from a limited view, LAMDA's interactive mode can be thought of as
DYNAMO's rerun mode; constants, tables, and output can be modified
interactively. New procedures and equations, however, can also be defined
interactively. Any LAMDA compatible syntax can be entered in interactive or
compile mode. LAMDA can be executed from a batch file when multiple runs
and extended input data/changes are required. Models can be productized,
compiled, and incorporated into LAMDA's -~ RUN-TIME package. With the
RUN-TIME package, models can be executed as a standard application by users
‘with limited computer experience and no knowledge of LAMDA.

The information in a LAMDA program is composed of variables, sets, and
structures. Variables store the information and sets classify it.

Variables are multidimensional arrays whose dimensions (up to 10) or
subscripts are sets. Because of the correspondence between sets and
variables, LAMDA can operate on variables without the need for a complicated
subscript reference. :

The statements of LAMDA are organized into well-defined complete, causal
structures. A LAMDA statement is not simply a line of code; it contains
built-in internal structure which the user does not have to program. LAMDA
statements have no line numbers and no GOTO statements. With LAMDA's
structural syntax they are not needed. Full 8087 numerical processing is
automatically supported.

LAMDA contains a full screen editor, a data manager, and a program manager.
The full screen editor enables the user to develop and modify models and
organize the resultant files on mass storage. It also enables the user to
correct programming errors as they occur during the compilation.

~25-

The database manager can reduce the memory requirements of data storage or
allow all data to be stored for later review. Results from multiple runs
can be stored in such a way as to focus on critical portions of the
analysis. Model generated data can be manipulated and reviewed without
“rerunning” the model. The database functions also allow the user to
"resume” a simulation from any time period. The data manager can be used
interactively and independently from the program code. Data files can be
textual,. random access, or in LAMDA array format for use with none LAMDA
pre- or post-processors. With the database, multiple run can be stored for
later comparison analyses. ‘

The program manager allows extremely large programs to be executed on the
microcomputer by dividing the code into segments and organizing them into a
hierarchical. tree structure. To date, even programs that could not fit on
large mainframes without virtual memory fit easily on the microcomputer
without the need for program management. "Additionally, the existing
applications execute in only twice the time required on the mainframe.

An integrated sensitivity/confidence package (HYPERSENS) allows parameters
or structures to be evaluated as a function of time and other parameters for
their impact on model results. (Ford 1983, Amlin 1985) The approach is
particularly useful for determining the robustness of policies tested with
the models. The package can show the need or lack of need for additional
data. Confidence intervals are determined along with the time and
circumstances where certain information is critical. ZErrors in model logic
and coding become obvious. All probable behavior modes of the model are
concomitantly simulated as part of the sensitivity analysis process.
HYPERSENS uses Latin-Hypercube sampling methods to vary all parameters
simultaneously to insure full sensitivity analysis of all variables over the
complete time horizon of the model.

An integrated statistical package can be used to estimate model parameters
based on historical information, or in combination with the database, used
to test model hypotheses and statistical inferences. Both a multiplé (and
step-wise) linear regression (MLR) and an adaptive process regression (APR)
package are available with LAMDA. Transformation capabilities and all
standard statistics are calculated. The complexity of the problem is only
limited by the capacity of the microcomputer hardware. The APR package
focuses on fuzzy-set and state-—space analyses. With it, the best choice of
several possible alternative hypotheses can be evaluated. These packages
are developed in cooperation with Ohio State University faculty.

LAMDA has been adopted by the American Public Power Association as the the
host decision support system (DSS) for finmancial, systems, regulatory and
enginering analyses. The Electric Power Research Institute is currently
considering LAMDA as one of the DSS packages it recommends. Several
utilities and utility commissions currently use LAMDA with System Dynamics
applications on a daily basis. (Backus 1985) All clients whose original
applications were developed with DYNAMO have since converted to LAMDA for
less than the licensing cost of DYNAMO. Clients are also converting their
DSS applications to LAMDA in order to take advantage of its integration
capabilities.

~26-

SPECIFICS FOR SYSTEM DYNAMICS APPLICATIONS

LAMDA forces structure upon the System Dynamics model. It requires that all
variables be defined before they are used. Variables are also "weakly
typed" as real, integers, money, time, strings or code. Because LAMDA
allows a model to be built from separately compiled procedures, it forces
the modeler to think of the system as interconnected subsystems. The
behavior of each subsystem can be tested separately before integration into
the larger model. The input, outputs and interfaces of each part must be
recognized. LAMDA will allow simulation with a haphazard assembly of
equations but more easily simulates an orderly progression of causal thought
as exemplified by the causal flow of equations in causally related
procedures. This relationship is analogous to sentences forming related
paragraphs as a complete explanation of a process. Carrying this analogy
further, LAMDA has a syntax composed of only nouns and verbs. LAMDA is
structured to DO, SELECT, AUDIT, EDIT, COMPARE, DEFINE, READ, WRITE, PLOT,
etc. nouns (options, data, variables, and equations).

All of the basic DYNAMO macros (SMOOTH, DELAY, STEP,CLIP, etc.) are
implemented in LAMDA in the standard syntax. LAMDA, however, uses no ".K'"s
or equation typing. All functions such as MAX, ABS, or SUM are performed on
vectors or arrays. For example, the equation:

PEAK(CLASS)=MAX (HOUR) (DEMAND (CLASS, HOUR))

will find the maximum energy demand by rate classifiéation (CLASS) from
hourly demand data. The functions IMAX and IMIN are identical to the DYNAMO
MAX and MIN functions.

LAMDA does not order the equations as does DYNAMO. This drawback is offset
by the extensive conditional branching structure capabilities LAMDA provided
at the expense of "self-ordering.” The value of this branching capability
will become clear later. In terms of equation ordering, LAMDA requires a
separate initialization procedure for all levels. This procedure can be as
simple as assigning initial values from the database to the levels, to very
complicated equilibrium condition setting (even if the initial condition
requires the solution to simultaneous equations). Equations need only be
ordered within the subsections of procedures. The normal style of writing
the level equation first, then the rate equations, then the auxilaries are
simply reversed. The logical segregation of the model into subsystems
(procedures) almost automatically insures that information is calculated
before it is used. The modeler must, nonetheless, manually deal with the
"order of calculation” concerns. The need for all equations to use the same
"level value"” for a given time period is achieved by actually having two
values for the level. (Similar to the concept of a ".J" and a ".K" value in
DYNAMO.) One value is always used on the right side of the equation even if
a new value has been calculated on the left side of the defining equation.
At the end of a time iteration the "right side” value is set equal to the
"left side” value.

As noted earlier, LAMDA operates on each equation as an array process.
There is seldom the need for the equivalent of a DYNAMO "FOR" statement in

LAMDA. A level equation:

-27-

POP=POP+DT*(BIRTHS~DEATHS+NETMIGR)

would be performed over all indices automatically, unless a set of indices
were selected. For example, the BIRTH equation could be preceded by a:

SELECT AGE (TEENAGER,ADULT),SEX (FEMALE)
BIRTHS=POP*FERTILITY

BIRTHS would only be calculated from females for these two age groups (and
all remaining dimensional indices). This selection remains in effect until
a new select statement is encountered. The statement, "SELECT AGE* SEX*",
would reset the model to use all age and sex indices. Note that only the
form of a level equation distinguishes it from all others. There is no
distinction between rates and auxiliaries. Constants and tables are defined
in the same manner as DYNAMO and/or stored on the database:

Table functions are defined differently in LAMDA but can be of any dimension
up to 10. The name of the table function must be defined. For instance if
fertility is a function of food per capita (FPC) then a funetion called
TABFR could be developed that relates FPC to FERTILITY as:

FERTILITY=TABFR(FPC)

The user defines both the x and "y" values of the variable. If the function
were just FERTILITY as a function of FPC then the range of FPC could be from
0 to 10000 calories per day. The intervals between steps don not need to be
constant. Thus the user can increase the resolution in critical areas. The
FPC range table could be FPCR. The corresponding FERTILITY range table (the
output) could be FRT. In LAMDA the "set-up" of the table would be:

READ FPCT :

0 500 750 1000 1100 1200 1500 2000 2500 3000 10000
READ FRT

0 1E-5 2E-5 1E-4 2E-4 5E-4 7.5E-3 1E-2 3E-2 S5E-2 5E-2

to change one entry in the table interactively (in rerun mode) the user
could type "FRT(6)=3E~4". To change several entries the user could type a
SELECT statement and then "READ FRT." The range can also be changed
interactively.

Occasionally models must be developed which contain a wide range of time
constants. The short-term behavior may come to equilibrium quickly relative
to the long~term mechanisms. In LAMDA these short-term phenomena can be
treated as simultaneous equations which are solved for their equilibrium
solution. The user simply defines a set of equations as a "system.”
Whenever the "system" is called, LAMDA will solve the equilibrium conditions
for all output variables, based on the input variables.

~28-

LAMDA has extensive conditional capabilities. These are primarily of the
form: .

DO IF condition
statement(s).
ELSE condition
statement(s)
ELSE condition
statement(s)
ELSE ...

END

LAMDA supports comparison of both numerical values and alphanumeric strings
(characters). Conditional statements can involve multiple logical operators
connected by AND, OR, and NOT. This comparison can be used for “"clipping” in
different structures or policies at the user's discretion, performing unique
operations on selected variables or interpreting output to tell the user
what is happening. For example, conditional statements can be used for
error checking, to show when a variable has exceeded critical values, or
that oscillations are occuring and spreading to other subsystems. LAMDA can
also request user input via the "ASK" statement whenever necessary.

There is also a SELECT OPTION statement which is quite similar to the DYNAMO
OPTION statment. It allows the user to set—up the printer, change the color
of the video output, set margins, cursor/printer head location, generate
page ejects, and set graphics resolution.

As yet, every known use of DYNAMO can be duplicated and enhanced using
LAMDA. LAMDA's higher-level structured approach also makes it flexible
enough to perform most functions available to more general languages such as
PASCAL with minimal conceptual or programming difficulty. LAMDA has many
other capabilities not presented here. A complete user's manual and demo
diskette are available.

An example of a very simple but complete model is shown below. Other
examples are available free from the authors.

* *
* %* * * * *
*# Simple Population Model ®
* * %
® LAMDA Example Program ®
* * * * * *
* *
hkdokkdekkkk

DEFINE SET

KdekKk Fekok Kk

*

YEAR(40)

RANGE(11)
*

END DEFINE SET
*

Kkkkkkhhkikkkkk
DEFINE VARIABLE
Fokkkkkdkdkdkhkk
*
BR(YEAR) 'Birth Rate (Persons/Yr)' , TYPE=REAL(8,10)
DR(YEAR) - 'Death Rate (Persons/Yr)' » TYPE=REAL(8,10)
FIR(YEAR) 'Food Increase Rate (Calories/Yr)' , TYPE=REAL(8,10)
FOOD(YEAR) 'Food (Calories)' , TYPE=REAL(8,10)
FOODI 'Initial Food (Calories)' »TYPE=REAL(8,10)
FOODV 'Food Value(Calories)' , TYPE=REAL(8,10)
FPC(YEAR) 'Food per Capita (Calories/Person)’ , TYPE=REAL(8,10)
FPCR(RANGE) 'FPC Range per Capita (Calories/Person)',TYPE=REAL(8,10)
FR(YEAR) 'Fertility Rate ((Persons/Person)/Yr)' » TYPE=REAL(8,10)
FRR(YEAR) 'Food Regen. Rate ((Cal./Cal.)/Yr)' , TYPE=REAL(8,10)
FRT(RANGE) 'FR Table ((Persons/Person)/Yr)' » TYPE=REAL(8,10)
FUR(YEAR) 'Food Usage Rate (Calories/Yr)' » TYPE=REAL(8,10)
MR 'Mortality Rate ((Persons/Person)/Yr)' » TYPE=REAL(8,10)
POP(YEAR) 'Population (Persons)’' » TYPE=REAL(8,10)
- POPI 'Initial Population (Persons)' s TYPE=REAL(8,10)
POPV 'Population Value (Persons)' , TYPE=REAL(8,10)
YRV(YEAR) 'Year' » TYPE=INTEGER(2)
*

END DEFINE VARIABLE
*

DEFINE RELATION

TIME(YEAR,YRV)

END DEFINE RELATION

*

DEFINE FUNCTION

TABFR(FRT,FPCR)

END DEFINE FUNCTION

*

DT=.25

ENDING=40

YRV(1)=1

SELECT YEAR(1-39)

YRV (I+1)=YRV(I)+1

SELECT YEAR*

%

READ FPCR

0 500 750 1000 1100 1200 1500 2000 2500 3000 10000
READ FRT

0 1E-5 2E-5 1E-4 2E-4 S58-4 7.5E—4 1E-3 3E-3 5E-3 5E-3
*

FRR=.05

FOODI=1E9

MR=.015

POPI=10000
*

hhkkhkhhhhhrhkkhiihhhiiiiik
DEFINE PROCEDURE INITIAL
hkkkhhhhkihkhkkihkrhXxhhhkik
*

TIME=0

FOODV=FOODI

POPV=POPI

END PROCEDURE INITIAL

*

khkhkikhkhhkkhhihhhird
DEFINE PROCEDURE RUN
hhkkhkkhkkhkhhhkhhkkhkiix

*

DO UNTIL TIME GT ENDING
SELECT YEAR(TIME)
*

* FOOD

*

FOOD=FOODV
FPC=F00D/POP
FUR=IMIN(FPC,3500)*POP
FIR=FOOD*FRR
FOODV=FOODV+DT*(FIR-FUR)
*

* POPULATION

*

POP=POPV

FR=TABFR(FPC)
BR=POP*FR

DR=POP*MR
POPV=POPV+DT* (BR-DR)

*

WRITE (TIME,POP,FOOD)
TIME=TIME+DT

END DO UNTIL

SELECT YEAR*

SELECT GRAPHICS=HIGH
PLOT LINES (YRV,FOOD,POP)
PLOT LINES (FOOD,POP)
*

END PROCEDURE RUN
*

INITIAL

RUN

WRITE ("Rerun Changes?")
* » .

~-30-

-31-

REFERENCES

Amlin, J. S., A. Ford and G. A. Backus. "A Practical Approach to Sensitivity
Testing of System Dynamics Models,” Proceedings of the 1983 International
System Dynamics Conference, Chestnut Hill, MA, July 27-30, 1983.

Backus, G.A. and J. 5. Amlin. "Integrated Utility Planning and Consumer
Response Model." National Regulatory Research Institute Papers, Columbus,
OH. September 14-17, 1983

Amlin, J. S. and G. A. Backus. "Interactive Sensitivity/Confidence Analysis
of Large Scale Simulation Models on Microcomputers.” 1985 Summer Computer
Simulation Conference, Chicago, IL, July 22-26, 1985

Backus, G.A. and J. S. Amlin. "Comprehensive Corporate Policy Planning Using
Large-Scale Simulation on Microcomputers.” 1985 Summer Computer Simulation
Conference, Chicago, IL, July 22-26, 1985

