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Abstract This paper deals with the analysis of the classical investment
and pricing. problem of a monopoly faced with competition from
substitute industries or marginal firms in the same field. The rmonopoly
owns a finite level of a resource (ie, the stock of an exhaustible
.resource), whose usage is to be divided optimally over a finite
planning horizon. The demand for the resource is described by a
downward sloping demand curve which is affected by the measures of
the competitor. The monopoly and its competitor are maximiiing the
present values of their net profits over the planning horizon. The
problem is first formulated as a non-cooperative differential game.
The necessary conditions for the Nash solution are derived.

The necessary conditions for the solutions are stated as a two-point
boundary vatue problem which admits also an analytical solution if
some simplifying assumptions are made. However, to relax these
assumptions numerical solutions are computed by employing System
Dynamics.

In terms of System Dynamics the two-point boundary value problems
have initial states for some level variables and terminal states for
some other level variables. To solve this problem with System
Dynamics we have used the Newton-Raphson method. In the
Newton-Raphson method two System Dynamics models are needed: one
to produce a Jacobian matrix and another to produce solutions for the
original problem.
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1. INTRODUCTION

In this study we deal with the classical investment and pricing problem
of a monopoly that attempts to maximize the present value of net
profits over a finite planning horizon. The monopoly operates under
demand and supply constraints. The demand constraint is represented
by a demand function, the location of which, in the price-quantity
space, is determined by the level of competition. Competition towards
the monopoly may emerge either from substitute industries or from
uncontrollable marginal firms in the same industrial field. The supply
constraint states: that the monopoly has only a finite level of
production resource, eg. raw material, available.

The decision variable of the competitor (competitors) who also aims at
maximizing the present value of its net profits, is the level of
investment in production capacity. The sales rate of the competitor
depends directly on the level of investments and the net profit of the
competitor is decreased, of course, by the investment costs. The net
profits of the%':;_z monopoly as well as the net profits of the competitor
are decreased by the constant marginal production costs.

The classical investment and pricing problem described above was
formulated by Lieber and Barnea (1977) as a differential game
problem. After some assumptions concerning the strategies of the
competitor they solved the problem as an optimal control problem.
Dockner and Jorgensen (1984) analysed the same problem both as a
non-cooperative and as a cooperative case.

Because the structure of the competitive problem situation’ is dynamic
the solution process turns quite naturally into differential games.
Differential games are multi-phase games with continuous ‘time. In
those games, generally, the transition of n-dimensional state is
described by a system of differential equations and the players may
affect the motion of the state by means of control variables (vectors).
When a differential game is solved according to the principles of
optimal control theory, a two-point boundary value problem must be
solved. In terms of System Dynamics, the two-point boundary value
problems have initial states for some level variables and terminal
state, requirements for some other level variables.

In this study we have ended up to the numerical solution of
differential games to relax some of the heavy assumptions in the
analytical solutions of the original model. As a technique in the
numerical and graphic solution process we used Dysmap simulation
language. '
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In the next section not only the basic structure and solution of
differential games but also the solution of the arising set of
differential equations are described. This set of differential equations
is solved by the Newton-Raphson method. The connection between the
adopted approach and ordinal System Dynamics will be described, too.

In section 3, efforts have first been made to show the consistency of
our approach. The original problem is first solved analytically and then
numerically by Newton-Raphson method and then the results are
compared. Next someé assumptions are withdrawn and the relaxed
problem is solved by our approach. When the results of the more
realistic model are compared with those of the original model the
value of loosening of assumptions as well as the final value of our
approach can be assessed.

2. METHODOLOGY

In this section we first present the notation to be employed in the
deduction of an open-loop Nash equilibrium solution to a differential
game. In the second part the general differential game framework is
put forward. The necessary (and sufficient) conditions for an open-loop
Nash equilibrium solution are next deduced. The resulting set of
differential equations, which constitutes a two-point boundary value
problem, is then tackled using the Newton-Raphson method. Finally,
the connection between System Dynamics and the set of differential
equations will be presented and discussed.

2.1 Notation

The following notation will be employed in the presentation of the
methodology '

x(1) n-dimensional vector of the state variables characterizing
the state of the system at time t

u;(t) vector of the control variables of player i 1
T length of the planning horizon
t : time index

1 ) The letter i denoting the player is explicitly written only when it
is of significance.
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Pi payoif function of player i
i performance index of player. i (objective functional)
Li(t) vector of adjoint (costate) variables of player i for each

state equation
N number.of players

The vectors are all column vectors unless otherwise stated.

2.2 The general differential game set-up

The - employed presentation follows that of Feichtinger and Jorgensen
(1983). A similar one is used by Thepot (1983).

The development of the vector of state variables x(t) as a function of
time is characterized by the following set of state equations

dx(t)/dt = ;c(t) = g(x(t),u(t),t) x(0) = xq, fixed( 2.1)

Additionally, at least some of the state. variables may have a desired
terminal value that should be reached at the end.of the planning
horizon. This leads to the following terminal conditions

x(T) = S(x(T)) ( 2.2)

Taking into account the state equations in (2.1) and the terminal
conditions in (2.2) the player i is maximizing his performance index J!

as follows
T .
i =.gpi(X(t),u(t),t)dt + Si(x(T)) : ( 2.3)

The superscript i in the terminal condition part of (2.3) signifies that
only those terminal conditions whose state variables are in the control
of player i are included.

Furthermore, it is assumed that the control variables belong to a set
of admissible controls; ie, u; € ul for all i. This constraint is not
explicitly dealt with by including it to the problem, but only controls
that satisfy this condition are considered.

It is possible to include ordinary cohstraints on the control variables
or on the state variables (see eg Thepot (1983)). However, this will
not be done in this paper.



FTHE 1980 INTERNATIONAL CONFERENCE OF THE SYSTEM DINAMICS SUCIETY. SEVILLA, OCTOBER, 1986: 007

The problem composed of maximizing (2.3) subject to (2.1) and (2.2)
for player i can be formulated as maximizing the following
Hamiltonian for that player

Hi = Hi.(x(t),u(t),Li(t),.t) € 2.4)
= Pi(x(t),u(t),t) + LT(t) g(x(t),ult),t)

where the superscript T denotes the transpose of the column vector
L(1).

In the right-hand side of (2.4) the vector multiplication contains all
the state variables; ie, also those controlled by other players.

2.3 The open-loop Nash equilibrium solution

A solution to a differential game is called an open-loop solution if the
vector of optimal controls u; is only a function of the vector of
initial states xg and time t; ie, u;j = ujlxp,t). Other alternatives for
solutions are feedback solutions, where the vector of controls is a
function of the vector of state variables and time; ie, v = ui(x(t),1).
Also closed-loop no memory solutions are possible when the vector of
controls contains feedback solutions which also are functions of the
initials states; ie, u; = u;(x(t),xg,t).

There are various solutions to differential games depending on the
assumptions about the characteristics of the play. If the players are
cooperating the solution concept employed is a Pareto solution. As for
non-cooperative solutions if there is a precedence in the decision
making order a -Stackelberg solution is reached. On the other hand, if
the players are aiming at security the Nash solution concept should be
used. In the latter case, as long as all the players stick to their Nash
solution no single player can alone raise his payoff by changing his
strategy.

The necessary conditions for the open-loop Nash equilibrium solutions
for player i are

3Hi/3u; = 0 ( 2.5)
dLi(t)/dt = Li(t) = -3Hi/ax ( 2.6)
dx/dt = x(t) = g(x(t),u(t),t) ( 2.7)

Constraints (2.5) and (2.6) are defined for all the N players separately.

In constraint (2.5) it is assumed that the solution which is looked for
is in the interior of the set of controls Ul
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The behavior of the vectors of adjoint (costate) variables L(t) are
defined by constraints (2.6).

Constraints (2.7) contain the original vectors of state equations as in
(2.1).

Furthermore, the terminal condition of the vector of adjoint variables
is defined by the transversality conditions

Li(T) = dsi(x(T))/dx ( 2.8)

The necessary conditions (2.5) - (2.8) are also sufficient if Hi s
concave in (xuy) for all (L) or if (a weaker condition) the concavity
of max yi(y) H! jn x for all (LLt) is valid. Furthermore, S must be
concave in x(T).

After solving u(t) from (2.5) as.a function of (x,L,t) and inserting it
“into (2.6) and (2.7) we have a two-point boundary value problem (ie,
some state variables including the adjoint ¥ariables have initial
conditions and others terminal conditions or both) composed of the
differential equations in (2.6) and (2.7).

.

2.4 The Newton-Raphson method

To solve the set of differential equations defined by (2.6) and (2.7) it
is necessary to know x(0) and L(0). However, only the first one of
these initial states is known.

"After the substitution mentioned above we are dealing with the
following two-point boundary value problem

Li(t) = -8HI/3x = zi(x(t),L(t),t) : ( 2.9)
and
x(t) = g(x(t),L(t),t) ( 2.10)

Furthermore, it is known that

x(0) = xg ‘( 2.11)
and
Li(T) = dSi(x(T))/dx = ql(x(T)) ( 2.12)

Attention should be paid to the fact that there are differential
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equations like the ones in (2.9) for every player; ie, the number of
players times the number of state variables. ‘

To find the vector of initial states L(0) an iterative process employing
the Newton-Raphson method is put forward. Roberts and Shipman
(1972) as well as Polak (1971) among others present this procedure.

Let us subsequently drop the Superscript i denoting the player -since all
the equations are defined over 'the whole set of players N. A new
superscript j is introduced to imply the iteration. Hence, the following
notation will be adopted :

Ld = a guess for the initial states of the adjoint variables in
iteration j

xJ(t) = v(xo,L$,t) the value of the vector of state variables in
iteration j and period t when the initial states x; and L&
are used :

Li(t) = w(xo,Ld',t) the value of vector of adjoint variables in

iteration j and period t when the initial states xg and Ld
are employed

From (2.12) and the last definition above we know that
Li(T) = wixo,L{,T) = q(x(T)) = L(T) o 2.13)

Employing the Newton-Raphson' method the set of equa‘_cions> in. (2.13) is
. solved by first linearizing the equation :

wixg,Lj,T) - L(T) = wixq,L},T) - q(x(T)) ( 2.14)
= wixg,Lh,T) - a(vixg,L,T))

in the neighborhood of LJ Thus,

wixg,LJ,T) 4+ 3 (L(])+1 - Lh) - () =0 L 2.15)

where J (the Jacobian) denotes a matrix whose i,j element is
3wjxg, L[, T)/3L - 3q;(vlx, L, TN/AL

evaluated at It should be pointed out that in (2.15) the Jacobian J
is multiplied gy a column vector containing the differences between

the approximations for Ly in.two consequtive iterations.

In the case of (2.15) only a first order approximation, (one containing
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only first derivatives) is employed, higher order terms (derivatives)
could be added to improve the approximation.

On the other hand, equation (2.15) can be rewritten as
Lim « 3 @il - th - um = o (2.15)

Solving (2.159 for Lg*l we get the following iteration sequence

- 3-1 (Lg(T) - L(T)) ( 2.16)

The iteration process in (2.16) only works when the inverse of the
Jacobian J-1 is defined. "

It is readily seen from (2.16) that as the approximated terminal value
of L approaches the true one as the number of iterations j approaches
infinity the initial state of the vector of adjoint variables approches a
constant value, the solution.

In order to be able to solve the original two-point boundary value
problem we must first solve the Jacobian matrix J by evaluating its
components.

From above it is known that Lj(t) = w(xo,L&,t). Using the following
manipulation it is possible to determine a new system of differential
equations, whose solution contains the derivatives from the Jacobian
matrix J. Determine ’

d(aLi()/aL{)/dt = d(owlxg,L],t)/oL])/dt ( 2.17)
= a(dw(xq,L},t)/dt) /L] = a(dLi(t)/dt)/aLg
= az(xi,Lj,t)laL% = (09z/ dx) (av/aLé)v+ (8z/ L) (awlaLg)

To calculate the second part of the Jacobian we utilize the known
equality xJ(t) = v(xg,L},t) and then determine

d(axi(t)/aLg)/dt = d(av(xo;Lg,t)/aLg)/dt ' ( 2.18)
= 3(dvlxg,Li,t)/dt)/3L] = 3(dx)(t)/dt)/aL]
= ag(xi,Li,t)/aL% = (3g/ax) (BvlaLé) + (3g/aL) (Bw/BLg)

The following group of differential equations, which contains 2Nn?2
equations (n equals the number of state equations from (2.1) and N is
the number of players), is solved
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d(axj(t)/ai.()j)/dt= (3g/3x) (dv/aLl) ( 2.19)
+ (9g/aL) (aw/3L)) T

and

d(aLj(t)/aLOj)/dt = (3z/3x) (3v/3L}) ( 2.20)

+ (3z/9L) (Bw/?:Loj)

with the initial conditions

(3xj(t)/3Lg) = 0 and (aLi(t)/aLOi) =1, ( 2.21)

where I denotes an identity matrix.

The §rocedure to solve the problem is as follows

(1

(i)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

determine from the original problem of (2.9) and (2.10) the
derivatives necessary for the model in (2.19) and (2.20)

formulate the respective System Dynamics model (cf below
sections 2.3 and 3) using the equations (2.19), (2.20) and
(2.21) :

simulate the model for T periods; ie, the length of the
planning horizon

take the- values for the variables in (2.19) and (2.20) in
period T and insert then into the Jacobian - matrix J making
simultaneously the necessary other multiplications

calculate the inverse of the Jacobian matrix J-1 using eg
a Basic program

write the set of differential equations in (2.5)-(2.7) in
System Dynamics

use the iteration process in (2.16) continuing with the
iterations until the vector of initial states L(0) does not
change any more

save the final solution since it is the Nash equilibrium
solution

011
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2.5 System dynamics and differential equations

So far this section has only dealt with the differential gamne aspect ot
the topic. System dynamics has only been briefly mentioned as a
method in -solving the two-point boundary value problein. The reasons
why System Dynamics was chosen as our method is discussed next.

There is an obvious connection between differential equations and
System Dynamics. This has been discussed in detail by Kivijirvi and
. Tuorninen (1986). The state variables (both actual ones and adjoint
ones) are clearly level variables in System Dynamics. The behavior of
these state variables is determined by the state equations, which in
the language of System Dynamics are rate variables. Auxiliary
variables can be utilized to simplify the soinetimes complex equations.
In addition, System Dynamics provides tools modelling initial
conditions, constraints on states and controls (limiting functions),
jumps and delays.

3. A DYNAMIC INVESTMENT AND PRICING PROBLEM WITH
OPTIMAL SOLUTIONS

In this section we analyse the classical investment and pricing problem
of a monopoly faced with competition from substitute industries or
marginal firms in the same field. The monopoly owns a finite level of
a resource (ie, the stock of an exhaustible resource), whose usage  is
to be divided optimally over a finite planning horizon. The demand for
the resource is described by a downward sloping demand curve which is
affected by the measures  of the competitor.' The monopoly and its
competitor are .maximizing the present values of their net profits over
the planning horizon. The problem is first formulated as':a
non-cooperative differential game. The necessary conditions for ‘the
Nash solution are derived.

3.1 Original problem with analytical solution
It is assumed that the monopoly’s problem is to maximize

T '
32 = f(exp(-ryt)(p(t)-m)D(t))dt - S, (.3.1)
0

where

" D(t) = demand towards the monopoly at time t
p(t) = monopoly’s price at -time t
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m = constant marginal production cost
r, = discount rate
S, = salvage term.

]

The demand towards the monopoly at time t, D(t), is a linear function
of the price and the competitor’s sales rate, x(t). The demand
constraint is :

D(t) = a - b p(t) - x(t) > 0 | C(3.2)

where

x(t) = sales rate of the competitor at time t
production volume of the competitor at time t
capacity of the competitor at time .t

positive constants.

u

a, b

The supply constraint is expressed by the level of resources available
to the monopoly, y(t), at time t. The state (level) equation is given by

y(t) = - D(t), y(0) = y, > O. ( 3.3)

The problem of the price-taker competitor is to maximize
T

30 - flexp(-ry ) (p(t)-kIx(t) = glu(1)))) dt - S, ( 3.4)
0 .
where

u(t) = competitor’s investment in capacity at time t
g(u(t)) =, investment cost function (convex)

ry = discount rate

k = constant marginal production cost

S| = salvage term.

The sales rate of the competitor (production rate, resource level) is
given by the second state equation

x(t) = - u x(t) + u(t), x(0) = x5 > O, (3.5)
where
U = depreciation (deterioration) rate of capacity.

The state variables and the demand variable are constrained by x(t) >
0, y(t) > 0, D(t) > 0. A two-person nonzero-sum differential game is
defined by equations (3.1)-(3.5). In the original model (see Lieber -
Barnea (1977) and Dockner - Jorgensen (198%4)) following five
assumptions are made: )
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(1) t €(0,T) for both players

(2) glu) = B u? B> 0 and constant
(3) ry =rp =0

) u =0

(5) Sy = S5 = 0.

The current value Hamiltonians for the original problem are (t is
dropped out for brevity)

Hl = (p-k)x- 8 u2+L11u + L%(-a+bp+x) ( 3.6)
HZ = (p-m)(a—bp—x)+qu+L%(-a+bp+x), ( 3.7)
where

L? = current value adjoint variables, i,j = 1,2.
J

Necessary and sufficient conditions for the open-loop Nash equilibrium
solution with (3.3) and (3.5) are

3H! /du = -2 8 u + Li =0 | ( 3.8)
I.,i = -3Hl /ox =k - p - L% ( 3.9)
LL = -onl /ay =0 C( 3.10)
®HZ [ 9p = -2bp + a + bm - x - b 12 = 0 ' ( 3.11)
'ﬁ% = -9H2 /3 =p -m - L% ‘ ( 3.12)
f.g = -3H2 /3y = 0 ( 3.13)

Applying the transversality conditions the control variables are solved
from (3.8) and (3.11), respectively, as follows:

]

u* Lll/z g ( 3.1%)

*

P m/2 + al/2b - x/2b. ( 3.15)

The necessary and sufficient conditions can be presented in the form
of the following two-point boundary value problem:

(-3.16)

= Ll/28 x(0) = x

<o

= (bm - a)/2 + x/2 y(0) = yg ( 3.17)

ii =k + x/2b - m/2 - al2b Li(m) = 0 ( 3.18)
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L2 = a/2b - m/2 - x/2b LZ(1) = 0 ( 3.19)

2
&

i we define K = 2 v B b} then it is easy to obtain the following
analytically optimal solution of the problem:

x* = a+bm-2kb+(xg-a-bm+2kb)(cosh t/K . ( 3.20)
- tanh T/K sinh t/K)

u® = ((xg-a-bm+2kb)/K)(sinh t/K ( 3.21)
- tanh T/K cosh t/K)

Ll = JEB)(x0-a-bms2kb) (sinh t/K ( 3.22)
- tanh T/K cosh t/K) :

P¥ = k + ((xp-a-bm+2kb)/2b)(tanh T/K sinh t/K ( 3.23)
- cosh t/K)

D* = (k-m)b + (1/2)(xg-a-bm+2kb)(tanh T/K ( 3.24)

sinh t/K - cosh t/K)

A program list in Dysmap language equivalent to the analytical
solution (3.20) - (3.24) is given in Appendix lA and the respective
numerical solution in Appendix 1B. The numerical values of the

parameters appear in the program listing. .
53
ﬁ E
........................ B e enin e MK
g 2434554 b0 3 5 b B b B b 3 be e g E 1IN HAN f
28 & 8 8 ! ' '
g § g ¢ '
2 8 2 s ' '
2 & 5 2 :
g - . 1 ! X
: X X .
: ) h )
: L .. e eaeaa !
. ] ] '
: . , '
: ) | .
: . ' '
: = . \ '
s o o : n
8 =3 ° g : caanagannﬂEIDCIQBQQQEBEDQDQDQDQQ
s & 9 § : Pt ' '
g 8 4 8 Y- O
3 B
: o, ) :
: AN ) '
: | . ) )
: ) Mo, ‘
: h - '
: ) Y '
-3 =3 =3 ™ . "
g 8 2 ¢ 3 DU el I T '
° <@ o 2 ' " B '
=3 w R @© . Ed
=95 & 8 8 : ) ) .,
: . .
x : L
: . ) g
. ' [ v
ae a Ll .
o . ) .
. s " g:
g . | '
cools B e e e e B B e B B e B e o o e e
DO O O =3 =3 o e = o =3 =] (=) (=3
sggge > > ] a > > > 3
< o s s 8 s s s S s
S & 8 g 2 g e S 3 g
x & & = S

Figure | Analytical solution of original problem
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The graphic solution of the problem is shown -in the Figure 1. The
‘results indicate that the monopoly decreases the price, p, and the
competitor increases its production capacity, x,. by investments. The
net effect "of the decreasing price and the competitor’s increasing
sales’ is, the decreasing demand; D. The level of the monopoly’s
resource, y, is decreasing, but at decreasing rate.

3.2 Original problem with Newton-Raphson solution

To evaluate the appropriateness and effectiveness of the Newton-Raph-
son method we solved the original game-problem also with the
. Newton-Rapson method (see eg. Polak (1971)). As stated in Section 2
for the Newton-Raphson  method we need an ‘inverse of the Jacobian
matrix. For this purpose we start with the original problem (3.16) -
(3.19) and redefine the equations as follows:

%= A x +BL +C, x(0) =x°' ( 3.25)"
L - Dlx'+ E, : L(T) = Lp, ( 3.26)
where | | |
- e ]
[ y] [L@
S
€= lom-a - [ 8]
= [ wa
0 =[] tr = {0

To obtain the Jacobian matrix we must solve the following system of
differential equations:

dCaxi(t)/oLf)/dt = AGxi/aL))+ a(aLi/aLg) ( 3.27)

d(aLi(t)/aLg)/dt

D(ij/8L3)+ O(BLj/BLg) ( 3.28)‘

with boundary conditions:
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(ax (19 /3L]) = 0, ( 517 (to)/3L)) = 1 ( 3.29)
where I = identity matrix.

For solving this system of differential equations. an auxiliary
Dysmap-model was formulated. In the model following symbols are

used:

Zl =3 x [ alfy st=oLl /oLy

22 =3y [ 3L}, s2 =3 L2 oL}

Z3 =3 i L2 = 1 2

3=0x /5Ll s3=aLl /312

Z4 =3y / 3L2 St =9L2 / 3L2
02 : 1 02

The equivalent program in Dysmap language is provided in Appendix 2A
and the respective numerical solution in Appendix 2B. The results in -
Appendix 2B give the Jacobian :

J = 3365.0 0 ( 3.30)
-33646.6 1

and its inverse
[2.9712381:‘—04 0 J
J-1 2

9.997028E-01 1 ( 3.31)

Now it is possible to formulate a Dysmap model equivalent to the
original problem (equations (3.16) - (3.19)). The listing of the model is
provided in Appendix 2C. In the model, as a starting pbint for
iterations, 100 was assigned for L1 and L2. When the model was
solved, Appendix 2Cl, the terminal value of Ll = 19.377E+04% and L2 =
-19.107E+04 although they should be 0.

In the next iteration new initial values for the adjoint variables, LI
and L2, are computed by using the Newton-Raphson method {(equation
2.16). New values are 42.42631% and -2542.4271. Results are given in
Appendix 2C2. Now the terminal values of L1 and L2 are quite close
to 0, but one more iteration is still computed. The final results are

presented in Appendix 2C3, where the terminal value of LI = -0.011
and L2 = 0.012. These values are sufficiently close to zeros and
accepted. ‘

If the results in the Appendix 2C3 are compared with the analytical
results presented in Appendix IB it is easy to notice that there are
only insignificant deviations between the results in the end. However,
it should be pointed out that the price variable p* in the
Newton-Raphson approach is the myopic optimal price. Thus, the
Newton-Raphson method to find the Nash equilibrium seems to be
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valid. In the next section, the heavy assumptions of the original
problem are relaxed and the new problem is solved by Newton-Raphson
method.

3.3 A more realistic problem with Newton-Raphson solution
Next, the assumptions of the original model are changed as follows:

(1) t€(0,T) for both players

(2) gu) = Bu? B> 0 and constant
(3) l'l =TIy > 0
) u >0

(5)S; =0, Sp=((T) - p y%, 1> p >0

These changes in assumptions indicate that the net profits are
discounted by the same positive discount rate, the production capacity
of the competitor is decreased at yu rate, and that there is a
requirement for the terminal value of the resource of the monopol.

Now, the necessary and sufficient conditions for optimal pricing and
investment decisions are ’

x = -ux+L}/28 ( 3.32)
y = (bm-a)/2+x/2+b LZ/2 ‘ ( 3.33)
Lh=(r e Lb- Ll vk - p ; ( 3.34)
Lo el ( 3.35)
L2 - (r+yL2 -12 -m-p ( 3.36)
L% =12 o ( 3.37)

when the following control variables aré used:

u* -l /28 ( 3.38)
p* = a/ 2b - x/ 2b+m/2+ L2 /2 ( 3.39)
An auxiliary Dysmap-model for solving the Jacobian matrix is listed in
Appendix 3A and its solution in Appendix 3B. The variables are defined

with the same principle as in Appendix 2A. The inverse of the
Jacobian is :
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-1.08857E-02 9.08553E-01 0 2.56182E-03

-t - 0 1.35505E-01 0 0 3.40)
-4.26106E-02 -1.98201E-01 6.79071E-03 1.15831E-02
-1.90043E-03 -1.12865E-01 0 4.45893E-04

A model in™ Dysmap language equivalent to the revised problem
(equations (3.31) - (3.38)) is listed in Appendix 4A.

Four iterations were computed. The initial and terminal -values of the
adjoint variables are given in Table 1 and the other results of the
iteration process in Appendix 4B. Notice, that in the iteration process
the terminal value requirement must be included in equation 2.16

Iter L1l L12 L21 L22
0 50 50 50 50
(-25.720E+06) (368.99) (25.341E+06) (368.99)
1 41.419 0 -514.65 66111
(703.70) 0 (-343.86) (4.8798)
2 48.336 0 -485.69 1.8690
(3.1679) 0 (7.4281) (13.793)
3 48.372 0 -485.60 1.8754
(.30981) 0 (-.19321) (13.840)
4 48,372 0 -485.60 1.8754
(44.435E-03) 0 (-75.728E-03) (13.840)

Table 1: Initial and (terminal) values of the adjoint variables

The terminal values of the adjoint variables L1l, L12 and L2l are
relatively close to zero, as they should be according to the
assumptions. The value of L22 is 13.840 as indicated by the terminal
state requirement.

The graphic solution of the revised problem is shown in Figure 2,
which should be compared with Figure 1. )
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Figure 2_-Newton—Réphson solution of revised problem

Clearly, there are significant differences between the patters of
solutions. Even in this case the level of the monopolys resource, y, is
decreasing. However, its final value is at a much higher level than in
the original solution. The shape of the monopoly’s pricing behaviour is
interesting. First, the price, p, is decreasing but turns then to
‘increase. On the contrary, the level of competitor’s capacity is first
decreasing but at the end of the period it is increasing again.

All these drastic changes in the behaviour in the solution are possible
due to the changes in the assumptions of the model. And because
these changes are due to the adopted numerical approach its
contribution to investment and pricing problem is remarkable.
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4. CONCLUSIONS .

In this paper we have dealt with an investment and pricing problem of
a monopoly faced with competition employing System Dynamics to
solve this differential game problem. After the introduction and
general characterization of the problem in section 1 the methodology
was presented in section 2. That section also contained a brief
description of the differential game setting in general and a deduction
of the necessary conditions for an open-loop Nash equilibrium. The
connections between . differential equations and System Dynamics were
established. Section 3 contained a mathematical model which had been
solved analytically in a previous study. This model was then solved
with System Dynamics which resulted in the same solution. However,
the original model contained rather heavy simplifying assumptions,
some of which were relaxed in the study. Our methodology was then
utilized in this more realistic model and the model was successfully
solved in four iterations.

The original model employed was a very simple one with only linear
functions in the resulting two-point boundary value problem. The
proposed methodology is by no means restricted to these assumptions.
An attempt to prove this was made by formulating the methodology in
as general a way as possible. ‘As a generalization nonlinear state
equations will be dealt with in a future study where the Finnish forest
sector is analyzed. ’ :

In this study only Nash solutions for the problem were determined.
There are also other possible equilibrium solutions such as Pareto or
Stackelberg equilibriums. Although the optimality conditiohs for .these
are different they all the same constitute a two-point boundary value
problem which be can solved with the methodolgy presented in this
paper. :
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APPENDIX JA. A PROGRAM LIST ECUIVALENT TO THE -ANALYTICAL SOLUTION OF
THE ORIGINAL PROBLEM

0 * ANALYTICALLY OPTIMAL

1 NOTE ------mmmmmmmmmmm e o emmmm oo emmcmmoo o oseoom oo

2 NOTE HEAVY ASSUMPTIONS

I 0 ] e e S

4 A X.K=A+B*M-2*K*B+C*(COSH.K-TANH.K*SINH.K) COMPETITOR’S SALES
5 A U.K=(C/K)*{SINH.K-TANH.K*COSH.K) COMPETITOR’S INVESTMENT
6 A L.K=SQRT(BE/B)*C*(SINH.K-TANH.K*COSH.K) ADJOINT VARIABLE
7 A P.K=K+(C/2*B)*(TANH.K*SINH.K-COSH.K) PRICE
8 A D.K=(K- M)*B+0.5*C*( TANH.K*SINH.K-COSH.K) DEMAND
9 A Y.K=YI+B*(M-K)*TTME. K+(KK/2)*C*(SINH.K+TANH.K*(1-COSH.K)) RESOURCE
10 NOTE ---m--mmmmm m o emmmm e emmemmn oo s o amm oo

11 C A=400 PARAMETER OF DEMAND FUNCTION

12 C B=4 PARAMETER OF DEMAND FUNCTION

13 C M=40 MARGINAL PRODUCTION COST (MONOPOL)

14 € K=65 MARGINAL PRODUCTION COST (COMPETITOR)

15 C BE=8 _ PARAMETER OF INVESTMENT COST FUNCTION

16 C XI=10 . INITIAL SALES RATE

17 € YI=12000 : -/ INITIAL RESOURCE

18 NOTE -------- T

19 N KK=2*(SQRT(BE*B)) CAPLTAL K
20 N C=XI-A-B*M+2*K*B" CONSTANT
21 NOTE ~--mm=mmmmmmmmmmm e mmmmmmmmm i mmmes e

22 A COSH.K=((EXP(TIME.K/KK))+(EXP(-(TIME.K/KK))))/2
23 A SINH.K=((EXP(TIME.K/KK))-(EXP(-(TIME.K/KK)})))/2
24 A TANH.K=( (EXP(LENGTH/KK))- (EXP(- (LENGTH/KK))))/

25 X ((EXP(LENGTH/KK))+(EXP( (LENGTH/KK))))

27 C LENGTH 100 3
28 C DT=0.0625
29 C PRTPER=5
30 C PLTPER=2 ‘ :
31 NOTE =----=--mmmmmmmmcmmmemm oo oo s
32. PRINT 1)P,U/2)D/3)Y,X/4)L
33 PLOT. X=X(10,40)/P=P(65,125)/D=D(80,115)/Y=Y(0,12000)
gg RUN ANALYTICAL SOLUTION
+
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APPENDIX 1B. NUMERICAL RESULTS OF THE ANALYTICAL SOLUTION

THU, APR 3. 1986. 10:55 AM HP 3000 - HELSINKI SCROOL OF ECONOMICE

PBAGE 1
ANALYTICALLY OPTIMAL

TIHE P D ¥
U X
00.00E+00  125.00 115.00 12000. 42,1426
RIS 10.000
5.000 103.57 109.64 11439. 27.271
.29667 20.716
10.00 89.791 106.20 10900, 17.530
19070 27.605
15.00 80.935 103.98 10375. 11.268
12258 32.032
20.00 75,243 102.56 9859. 7.2428
78.791E-03 34.879
25.00 1.584 101.65 9348.9 4.6556
e . _ .. _bosheE-03 __ _ __ __ 36.708 - -
30.00 69.232 101.06 8842.3 2.992%
32.554E-03 37.884
35.00 67.720 100.68 8338.0 ~i?953; o
20.925E-03 38.640
40.00 66.749 100. 44 7835.2 T1l2365
13.451E-03 35.126
45.00 .12 100.28 7333.5 ) ;9365 .
86 44TE-0Y 33.7438
50.00 fe 722 100.18 _6;335,5 T 51575 o
639

90.00 65.029 100.01 2830.14 20.716E-03
22.536E-~05 39.985

) 55705 - 000 100.00 2330.3 00.000E+00
00.000E+00 40.000

T leo.o | 65.000 100.00 1830.3 00.000E+00
' 00.000E+00 40.000
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APPENDIX 2A. CALCULATION OF JACOBIAN FOR THE ORIGINAL

PROBLEM

* CALCULATION OF JACOBIAN
E

R Z1D.KL= (1/(2’515))*51 K
R %2D.KL=0.5%*Z1.K

R 23D.KL= (1/(2“3&)) 53.X
JKL=0.5%Z3.K

R SlD.KL (1/(2*3))“71»1(

VBN O EWN O
EY
N
=
o

.J+DT*S1D.
.J+DT¥s2D. JK
.J+DT*S3D.JK
. J+DTFSHD. JK

o

Q

BUmENNNNRERNND

ZOONZBZ I I ZRZE

o

35 C DT=0.0625
36 C LENGTH=100
37 C PRTPER=50

38 PRINY 1)Z1,Z2/2)23,24/3)S1.52/4)83,54

39 RUN JACOBIAN
*

APPENDIX 2B. NUMERICAL RESULTS

CALCULATION OF JACOBIAN

TIME Z1 Z3
%2 z4
(00.00E+0C  00.000E+0C  00.000E+00
00.000E+00 00.000E+00
50.00 29.003 00.000E+00
160.11 00.000E+00
100.0 2379.8 00.000E+00
13458 00.000E+00

JACOBIAN,
s1 s3
s2 sh
1.0000 00.000E+00
00.000E+00  1.0000
31.028 00.000E+00
-40.028 1.0000
3365. 6 00.000E+00
-3364.6 1.0000

Vad
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APPENDIX 2C. NEWTON-RAPHSON SOLUTION OF THE ORIGINAL PROBLEM

o * NEWTON RAPHSON APPROACH
1
2 NOTE HEAVY ASSUMPTIONS
3
y NOTE DECISION VARIABLES
5 A P.K=M/2+A/(2*B)-X.K/(2*Bj
6 A U.K=L1.K/(2%BE)
7 NOTE RESPECTIVE DEMAND
8 A D.K=A-B*P.K-X.K
9  NOTE STATE TRANSITION VARIABLES
10 R XD.KL=Ll.K/(2*BE)
11 R YD.KL=(B*M-A)/2+X.K/2
12 NOTE ADJOINT TRANSITION VARIABLES
13 R L1D.KL=K+Z.X/{2*B)-M/2-A/(2*B)
14 R L2D.KL=A/(2*B)-M/2-X.K/(2*E)
15  NOTE STATE VARIABLES
16 L X.K=X.J+DT*XD.JK
17 L Y.K=Y.J+DT*¥D.JK
18  NOTE ADJOINT VARIABLES
19 L L1.K=L1.J+DT*L1D.JK
20 L2.K=L2.J+DT*L2D.JK
21 NOTE INITIAL STATES
22 C ZERO=0.
23 N X=XI
24 N Y
25 N L1
26 L2=
27  NOTE PARAMETERS
28 C A=d PARAMETER OF DEMAND FUNCTION
29 ¢ B=u PARAMETER OF DEMAND FUNCTION
30 € M=bo MARGINAL PRODUCTION COST (MONOPOL)
31 € K=65 MARGINAL PRODUCTION COST (COMPETITOR)
32 C BE=B PARAMETER OF INVESTMENT COST FUNCTION
33 C XI=10 INITIAL SALES RATE
34 € YI=12000 INITIAL RESOURCE
35  NOT) ———-
36 C LENGTH=100
37 € DT=0.0625
38 ¢ PRYPER=50
39 ¢ PLEPER=5
40 PRINT 1)L1,L2/2)P,U/3)D/U)X,Y
41  RUN .
42 +

NEWTON RAPHSON APPROACH
TIME

L1 P D X
L2 u ¥
00.00E+400 100,00 8.750 Tusl00  T10.000 ’
100.00 6.25 12000,
50.00 2362.6 Cwses Srare T1709.8
~912.63 187.66 12051
100.0 19.377E+0k -17062.  _6B40B. | 13.706E.0%
-19.107E+04  12111. 37;.6685~0M
NEWTON RAPHSON APPROACH
TIME L1 P D x
L2 u ¥
00.00E+00  42.Y426 4 68.;50 o _1I5705 o _15.606 o
-2542.4 2.6516 12060
50.00 50211 5 100.18 39,681
-1250.5 31.382E-03 6832.3
100.0 -.20358 9 100.08 39.848
.20020 -12.724E-03 1829.5
NEWTON RAPHSON APPROACH
TINE L1 P D X
L2 U Y
00.00E+00  42.426 68.750  115.00 10.000
-2542.4 2.6516 12000
50.00 50446 65.045 100.18 33,643
-1250.5 31.529E-03 6832.3
100.0 -11.500E-03  65.002 100.01  39.983
12.220E-03 -71.877E-05 1830.3
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APPENDIX 3A. REVISED MODEL / CALCULATION OF JACOBIAN

REVISED MODEL / CALCULATION OF JACOBIAN
OTE

21D. -K
Z2D. KL
Z3D.KL——MYY*ZB K+(1/(2*BE))‘SS.
Z4D.KL=0.5%Z3.K +(B/2)*s8
Z5D.KL=-MYY*Z5. K*(l/(Z'BE))’SQ,
Z6D.KL=0.5%Z5.K+(B/2)*S12.K
Z7D.KL=-MYY*Z7 .K+(1/(2*BE))*S13.K
Z8D.KL=0.5"27.K+(B/2)*S16.K

*
N
R
R
R
R
R
R
R
R
N
R SlD.KLx(ll(Z’B))'Zl.K+(R+HYY)'Sl.K—SZ.K—OAS‘S".K
R
R
R
R
R
R
R
R
R
R
R

= =

S52D.KL=R*S2.

S3D.KL=—(1/(2*B))*Zl K+(R+MYY)*S3.K-0.5%S4.K

SUD.XL=R*S

S5D.KL= (l/éZ*B))*Z3 K+(R+MYY)*S5.K-S6.K~0.5%88 . K
#86.K

S7D.KL—-(l/(2"B))*Z3 K+{R+MYY)*S7.K-0.5%S8.K
S8D.KL=R*S8
$9D. KL (1/(2*5))“z5 K+(R+MYY)¥59.K~510.K-0.5%S12.K
(1/(2*5))*25 K+(R+NYY) *S11.K-0.5%S12.K

X

s12.
1/(2”5))*27 K+(R+MYY)*S13.K-S14.K-0.5%816.K
K

. (1/(2 B)) Z7.K+(R+MYY)*S15.K-0.5*S16.K
S16D.KL=R*S16

.J+DT*Z1D. JK

.J*DT*Z7D Jh

LJ+DT¥ SSD

. J+DT*S6D.JK
LJ+DT#*S7D. JK
.J+DT*S8D.JK

. J*DT*S9D. JK
LJ+DT¥S10D.JE
.J+DT*S11D.JK
.J+DT*S12D.JK
L J+DT*S13D.JK
.J+DT¥*S14D. JK
LJ+DT¥*S15D. JK
6.J+DT*S16D.JK

0.0625
C LENGTH=100
C PRTPER=50
PRINT 1)21,22,23,24,25,26,27,28
PRINT 2)81,82,83,54,585.56.57.58/3)S9,510,811,512,513,S14,515,516
RUN JACOBX
+

627
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APPENDIX 3B. NUMERICAL RESULTS FOR JACOBIAN / REVISED PROBLEM

REVISED MODEL / CALCULATION OF JACOBIAN JACOBI

TIME Tzl S1 59
S2 . 810
83 811
Sk 512
85 813
$6 Si4
ST S15 -
s8 S16
00.000E+00 1.6000 00.000E+00

00 .000E+00 00.000E+C0 00.000E+00
00.000E+00 00.000E+00  1.0000

00.000E+0C 00.000E+00  00.000E+00
00.000E+00 00.000E+00  00.000E+00
00.000E+00 1.0000 00.000E+00
00.000E+00 00.000E+00  00.000E+00
00.000E+00 00.000E+00  1.0000

50.00 66.696 146.23 00.000E+00
308.30 00.000E+00  00.000E+00
-T48.32 -134.10 12.135
-3293.0 00.000E+00  00.000E+00
00.000E+00 -1665.8 -832.90
00.000E+00  2.7166 00. 000E+00
-374.16 1351.8 518.99
-1474.8 00.00CE+00. 2.7166

100.0 13812 30280. . 00.000E+00
64528. 00.000E+00  00.000E+00
-15.868E+04 -30133. 147.26

~T4.052E+04 00.000E+00  00.000E+00
00.000E+00 -~34.793E+04 -17.397E+04
00.00Q0E+00 7.3798 00.000E+00
-79338. 34.327E+04 16.930E+04
-36.962E+0U 00.000E+00  7.3798
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APPENLIX +4A. NEWTON-RAPHSON SOLUTION / REVISED MODEL

* NEWTON RAPHSON APPROACH
NOTE MORE REALISTIC ASSUMPTIONS

NOTE

NOTE DECISION VARIABLES

A P.K=M/2+4A/(2%B)-X.K/ (2*B)+L22.K/2

A U.K=L11.K/(2*BE)

NOTE RESPECTIVE DEMAND

A D.K=A-B*P.K-X.K

NOTE STATE TRANSITION VARIABLES

R XD.KL=-MYY*X.K+L11.K/(2*BE)

10 R YD.KL=(B*M-A)/2+X.K/2+(B*L22.K)/2

11 NOTE ADJOINT TRANSITION VARIABLES

12 R LIID.KL=(R+MYY)*L11.K-L12.K+K+X.K/ (2*B)-M/2-A/ (2*B)-122.K/2
13 R L12D.KL=R*L12.K

14 R L21D.KL=(R+MYY)*L21.K-L22.K/2+A/ (2*B) -M/2-X.K/ (2*B)
15 R L22D.KL=R*L22.K

16  NOTE STATE VARIABLES

17 L X.K=X.J+DT*XD.JK

18 L Y.K=Y.J+DT*YD.JK

19 NOTE ADJOINT VARIABLES

20 L L11.K=L11.J+DT*LI1D.JK

21 L L12.K=L12.J+DT*L12D.JK

22 L L21.K=L21.J+DT*L21D.JK

23 L L22.K=L22.J+DT*L22D.JK

24 NOTE INITIAL STATES

WONOTTRWN O

25 N X=XI

26 N Y=YI

27 N L11=IL1 v
28 N L12=IL2

29 N L21=IL3

30 N L22=IL4

31 NOTE INITIAL VALUES OF ADJOINT VARIABLES

32 C IL1=48.37228117

33 C IL2=5.2304E-24

34 C IL3=-485.5970190

35 C IL4=1.875395286

36 NOTE PARAMETERS

37 € A=400 PARAMETER OF DEMAND FUNCTION

38 C B=4 PARAMETER OF DEMAND FUNCTION

39 € M=40 MARGINAL PRODUCTION COST (MONOPOL)

40 C K=65 MARGINAL PRODUCTION COST (COMPETITOR)
41 C BE=8 PARAMETER OF INVESTMENT COST FUNCTION
42 C MYY=0.03 DETERIORATION OF CAPACITY

43 € R=0.02 DISCOUNT RATE

44 C XI=10 INITIAL SALES RATE

45 € YI=12000 INITIAL RESOURCE

46 NOTE --------rmmmmmmmm oo oo oo oo oo e
47  C LENGTH=100

48 C DT=0.0625

49 C PRTPER=10

50 C PLTPER=2

51  PRINT 1)L11,L12,L21, L22/2)P U,D/3)X,Y

52  PLOT P=P(60, 70)/X X(10 70)/D-D(60 120)/Y=Y(0,12000)
53  RUN FINAL ITERATION

54 +
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APPENDIX 4B. NUMERICAL RESULTS / REVISED FROBLEM

NEWTON RAPHSON AFPROACH ITERATION 0
TIME L1l X
L1z U Y
121 b
123
00.00E+00 50.000 93.750 10.000 o
- 50.000 3.1250 12000.
50.000 15.000
50.000
50.00 -12.310E+04  7045.8 55263,
135.83 -7694.0 ~22.786E+0Y
98191 . 27480.
135.83
100.0 ~25.720E+06 14.664E+05 -~11.729E+06

368.99 -16.075E+05 -54.705E+06
25.341E+06 58.6U41E+05
368.99

NEWTON RAPHSON APPROACH ITERATION 1
TIME L1l P X
L12 U b
L21 D
L22
20.00E+00  41.419 69.081 10.00¢C
10.000E-09  2.5887 12000.
-51Y4.65 115.68
166111
50.00 24,484 5.8 40.740
27.166E-09  1.5303 6908.3
-407.1 96
1.796
100.0 703.40 27.758  557.46
73.799E-09  43.963 3742.1
-343.86 ~68.u485
N u.8789
NEWION RAPHSON APPROACH ITERATION 2
TINE L11 X
L12 U Y
L21
L22
00.00E+00  48.336 69.68Y 10,006
-13.530E-1%  3.0210 12000
-485.69 111.2
1.859
50.00 843 66.276 554105
-36.810E-14  1.8652 72592
-356.41 84.793
5.077z
1000 3.1679 69.76% 57.042
~99.996E-14 .1973a 3892.7
7.4281 63.893
13.793
NEWTON RAPHSON APPROACH ITERATION 3
TIME L1l X
L12 [ Y
L21
L22
00.00E+00  48.372 69.638 10.000 -
-39.300E-20  3.0233 12060.
-485.60 111.25
1.8754
50.00 .875 278
-10.676E-19  1.8672
-356.8 y
5.0946
100.0 30981 69.940 T55.830
-29.003E-19  19.363E-03  3583.7
-.19321 61401
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APPENDIX 43. Continued

NEWTON RAPHSON APPROACH FINAL ITERATION
TINE L1l P X
L12 U ¥
Lel D
L22
00.00E+00  48.372 69.688 10.000
52.304E-25  3.0233 12000.
-185.60 111.25
1.8754
10.00 33.632 67.549 28.767
63.876E-25 2.1020 1094%
-456.86 101.04
2.2903
20.00 28.361 66.683 37.726
78.009E-25 1.7726 9963.5
~434.41 95.543
2.7971
30.00 27.234 66.35Y 42.828
95.269E-25  1.7021 9027.6
-h12.20 91.754
3.4159
40.00 28.048 66.260 46.605
11.635E-24  1.7530 8126.9
-387.0 88.354
41717
50.00 29.874 66.278 50.156
14.209E-24  1.8671 7261.1
~356.87 84.733
5.0947
60.00 32.209 66.369 53.936
17.353E-24  2.0130 6433.8
-319.57 80.588
6.2218
70.00 . 6.549 57.999
21.192E-24  2.1498 5651.2
-272.48 75.804
7.598%
80.00 34.740 66.916 61.793
25.881E-24  2.1713 4919.1
-211.19 70.54}
9.2796
90.00 28,224 67.764 63.219
31.607E-24  1.76U0 4238.7
-127.02 5.725
11.333
100.0 44, 435E-03 9.955

69. 55.718
38.600E-24  27.772E-0M  3593.2
~75.928E-03  64.461
13.840





