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1. Introduction.

A great interest has been raised recently on chaotic
beﬁavior in system dynamics models. This iﬁterest is largely
Justified. The digcovery that deterministic gsystems can show
chaotic behavior has‘deep consequences for the system dynamicist.
Among other things, it ig well known that strange -~ttractors show
a pathological sensitivity to initial conditions. This property
impedes»the use of a single trayectory (obtained by simulation)
as representative of the system behavior. So, the traditional
working way of the - system dynamicist should be deeply
reconsidered if these strange attractors are exhibited by their
models. This 1last is higly bossible due  to the nonlinear
character of these models. Therefore, the system dynamicist
should be able to study whether or not those attractors appear in
his models. If they appear, then the ¢lassical study through the

analysis of the trajectory should be rejected, and studies of an

stochastic nature -~not yet well understood- should be undertaken.
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In this paper we study some ecological system dynamics

models where such strange attractors seem to appear.

2. Modeling predator—-prey—food systems.

The problem of modelling the chain of relations between .
predator, prey and food (for the prey) can be solved using system
- dynamics. Of this three-levels structure the sub-structure formed
by predator and prey, and the ote formed by the prey and their

food have been previously discussed in the literature.

The former was studied forty years ago by Lotka and Volterra
in their classical model. Today it 1is well known that this ‘model
is unsatisfactory as far as it is structurally unstable (the only
equilibrium is a center). Fortunately we have a system dynamics
elaborated version which does not contain this restriction

(Henize 71).

The qualitative analysis of this latter version of the
predator—prey system shows that the model  exhibits some
interesting behaviors (point attractors and limit cycles) related
by Hopf bifurcations, that can be fully analyzed (Toro et al. 84,

Toro 86).

The second sub—structure (the prey and food one) can be
exemplified by the Kaibab system dynamics model. kGoodman 74).
This model is well known by the system dynamicists, and it
describes the collapse of the carrying capaciﬁy of the Kaibab

plateau, due to the uncontrolled growth of the deer population
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(the prey) as a consequence of a substantial extirpation of the
natural predators of the deer (cougars, wolves and coyotes). The
qualitative analysis of this model, using a two time scales
technique, permits understanding of the dynamic mechanism that

explains how the collapse is produced (Toro 86).

Now, in this paper, modeling that merges both sub-structures
into a single one is proposed. As a matter of fact not one but
two merging models are introduced. Both rest upon different
hypothesis, bﬁt both show many interesting behaviors,

particularly chaotic motion. These two models will be discussed

355

in what follows, with special emphasis on the chaotic motion they‘

can show.

3. Three levels model with external forcing.

Consider a predator—-prey model given by the equations:

e
I

= x(anl(x)—TZ(x)/bl—nzsz(x)) 1)

Ne
f

= b2 (T5(05(x))=0yTg(83(x)))

The Forrester diagram of that system is shown in Fig. 1. The
meaning of the variables and parameters 1is given in Appendix and
the shape of the tables is given in Fig. 2. This model 1is a
slight modification of one taken from (Henize 71) and for
appropiate values of the parameters shows an oscillatory periodic
behavior. which is characteristic of systems whose attractor is a
limit cycle. The qualitative analysis of this model has been

developed elsewhere (Toro et al. 84), where it has been shown
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Figure 1. Forrester diagram of the model.

that this model shows a Hopf bifurcation for parameter az.
Behaviour modes of (1) are resumed in Fig. 3a, 3b in the

parameter plane (nl, az).

In equations (1) neither the area of the habitat, nor the
amount of food resources of that habitat (the prey food) appear
explicitly. We shall introduce the following variables to take

into account in the model those attributes of the habitat:

AREA = area of the region (habitat).
y = resources supplied by the region.

RCP = resourceg consumed by every prey.
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Figure 2. Tables of the model.
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Furthermore, the tables TTl, TT2 and TT3 are introduced.

Those tables are related with Tl' Tz 13 (Fig. 2) throught a

change of scale in the axis, in such a way that:

1¢0) = TT1(1), T(3000) = TTl and so for TTZ, TT3.

Given appropiate values to the new parameters Egs. (1) can

be rewritten:

Yo
i

= x(anTl(RCPx/y)—TTZ(RCPx/y)/bl)—nzzTTB(x/AREA) (2)

Ne
i

= b3z(T5(63(x))—a2T6(93(x))

Up to now the hypothesis is that the amount of resources is

constant. If we change that hypothesis and assume that the amount

of resources changes periodically (this can be related to cycles

in nature due to annual cycles), then the variable y takes the

L2
® ® ®
€= Y f:_,/ P -3
x — L4
® © ® O ®

Ay

Figure 3a. Regions in the parameter plane Ny, Uy
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Figure 3b. Behaviour modes of the model.
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form.
y = REN+AMP*SIN(2*PI*t/PERIOD) (3)

where REN stands for the average value of the resources, and
AMP and PERIOD for the amplitude and period of the oscillation

respectively.

Equations (2), together with (3), form a nonautonomous
differential equation with forced oscillations. These equations

are written:

% = x(n;TT1(RCPx/y)~TT2(RCPx/y)/by)—n,zTT3(x/AREA) (4)
Z = byz(T5(0;5(x))~xyTg(03(x)))
y = REN+AMP*SEN*(2*PI*t/PERIOD)

That system can show a great variety of béhaﬁiors. These

behaviors for AMP = 0 are resumed in Fig. 3a, 3b.

For AMP > 0, PERIOD > 0, and. values of %y belonging to the
region to the right of curve L1 and above L4 (Fig. 3a) the system
shows a periodic behavior of the same period as the forcing

function v. In this case, for AMP = 0 the system (4) shows a

point atractor.

However, for ny and Gy in the regiong 5 or 6 (Fig. 3a, 3b)
the system (4) has a periodic attractor for AMP = 0. In that
case, for AMP > O the system (4) shows complex behaviors,

including strange attractors. Fig. 4a, 4b~shows a plot the output
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Figure 4b. Output of the system with PERIOD = 6.5, AMP = 20000.
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Figure 4c. Poincare map. 1500

of the system for that case.

Fig. 4c shows the Poincare map for the system (4) with AMP >

0 and parameters Ny, % in region 5 (Fig. 3a). The shape of

Poincare map confirms system (4) has a chaotic attractor.

Fig. Sa.shows a new output of (4) for other values of the

parameter in region 5 also. Fig. 5b shows the Poincare map. This

figure shows an attractor called a torus.

The results of the analysis of this model are very similar

to the ones reached by Rasmussen and coworkers for a simple model

of the economic long wave, where a Hopf bifurcation for the

unforced system and an strange attractor for'the forced system

have been found (Rasmussen et al. 84).
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4. Autonomous three level system.

In the previous section the three—stage system considered
was a predator—-prey one with the prey food acting as a forcing
function. Now we are going to consider a three-stage autonomous
system. This system has been inspired by a mixing of a model of
predator—prey type, as the one considered in the previous
section, with one of the Kaibab type, this last regarding to
relétions between prey and their food. As a matter of fact, the
model here introduced can be considered as a modification of the
Kaibab type model, when the predator are not extinguished but it
is allowed an interaction between predators and prey of the kind

sugested by the Lotka-Volterra godels.

TT8

Figure 6. Tables TT7, TT8.
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The proposed model is:

X = x(anTl(RCPx/y)—TTZ(RCPx/Y)/bl)—nzzTT3(x/AREA) (5.1)
2 = byz(TT5(0,(x))—x,TT6 (85 (x)) ‘ (5.2)
¥ = (RM-y)/TT7(y/RM)—yTT8(RCPx/y)k (5.3)

where x and z stand for the prey and predator populations,

and y for the food resources supplied by the habitat. Tables TT7

and TT8 are shown in Fig. 6.
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A careful analysis of equations (5.1.) and (5.2.) shows that -

they are analogous to the (2); whereas equations (5.2) and (5.3),

considering z constant, are a model of the Kaibab type, analogous

to the one in (Goodman 74).

In equations ‘(5) they appear a constant k whose relative
value is of a great interest to generate the different behavior
modes the model can exhibit. For different values of model

parameters the model can show point-attractors, limit cycles and

strange attractors.

Fig. 7a shows the output of the system for Ky = 0.25, and

Fig. 7b shows the Poincare map for this case. This map has a hump

and it is well known that maps with this shape are related with

chaotic attractors.



366 THE 1986 INTERNATIONAL CONFERENCE OF THE SYSTEM DINAMICS SOCIETY. SEVILLA, OCTOBER, 1986

e

IR )
e
R e e
e e e L e
-
L= S




THE 1986 INTERNATIONAL CONFERENCE OF THE SYSTEM DINAMICS SOCIETY. SEVILLA, OCTOBER, 1986 367

1500 N

500 Figure 7c¢. Poincare map. 1500

5. Conclusions.

Some interesting reflections are sugested by the previous
results. We have a single problem (the predator-prey—food system)
and two different models (based on different assumptions).
Traditionally the system dynamicist programes his model on a
computer, takes a plot of the output—-model and compares that plot
with the real data supplied by the system under consideration. If
the two models are in conflict, this will be solved by the "best
data fitting” principle. However, if we try to apply that
procedure to the system considered above, where strange
attractors appear, we are faced with the imp&séibility of solving
it. We could try to fit the trajectories of either of the models

to real data. But as far as the attractor is chaotic there are no



368 THE 1986 INTERNATIONAL CONFERENCE OF THE SYSTEM DINAMICS SOCIETY. SEVILLA, OCTOUBER, 1980

trajectories which is representative of the model behavior, so we
have not got a reference significative of the model behavior. The
system dynamicist is faced in such a case with a deep problem

regarding his methodology.
Appendix.

R = Rabbits
RBR = Rabbits birth rate

m 3 Normal birth rate

1=
RDR = Rabbits death rate

b1 = ] Rabbit average lifetime

RKL = Rabbits killed by lynx

n2‘= 500 Lynx kill normal

L~= Lynx

LBR = Lynx birth rate

b3 = 1.5 Lynx births normal LDR = Lynx death rate
b2 = Lynx average lifetime

Xy = 1/(b3b2) f 0.25

REN = 30000

RM = 40000
RCP = 20
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