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dn othis article we want to predict the dynamic behaviour

of a portfolio of assets, i.e., we want to know how quickly it

will move towards & new position of equilibrium - when

an

unstable situation has ocurred due to important changes in the

risk, (and in some cases in the return) of the securities.

In order ta carry owt thie forecast, firaet we  shouwld
locate the points of equilibrium, then anaslyse their stability

and lastly determine where, and under what conditions,
digcontimulties appear .

the

Changes in the return or in the risk of the securities
which make wup & portfolio can be smeoth and this also brings

about a smooth change in the portfolio, which is shown in

@

readjustment in dts composition. However, it sometimes happens
that, while the expectation of return remaing relatively
etable, circumstances arize which considerably increase the

rigk, in which case & seriocus digscontinuity ococurrs in
feature of the portfolio.

the

In this way, we can apply the methodology of Thom’s Theory
of Catastrophes in order to obtain valid conclusions using the
morpholagy of the butterfly catastrophe for +the portfolio’s

feature (efficient, non—-efficient and opportunity

or

poseudo-efficient), employing four control factors: return,

variance, transaction coste and risk aversion.
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INTRODUCTYION

A portfolico can be defined wEing e proportions
X {d=1F,...,n), of each of the securit: which make
the total; From our point of view th 2 proporbion Wi Ll be
the variables af state. For each sat  of valu of these
variables which verifies with the condition g‘x1m1 we will have
the univocal definition of portfolio.

it oup over

Let us congider to be n the total numbe v <33 gecurities
existing on the market, so that some of the x‘i components may
be null if the corresponding security does not form part of the
composition of & determinate portfolio. In this wisy the number
of securities remaines fixed and equal to o, and & portfolio
will be defined by & point in the space RN We thus remove
the problem which would confront w Pif we incorporated  or
disgpense  whith some securities and this would be reflected in
the change in the dimengsion of the support space.

Therefore, ‘the vﬁriablwg of state X,, which are posi
or null and verify E;xj' , ditemize completely the composition
of the portfolio and in  congsequence, detine dit. From this
definition, it e obvious that & gingle secuwrity can make wp @
portfolio. ’

dover

When portfolios are analysed (both in the MPT as dn  the
CAPM) it iz consgidered that the elements which characterise
them (control variables) arve: '

- expected returns

-~ rigk dinherent in these returng

Basing ourselves on these two elements, portfolios can  be
claseified idinto efficient and dinefficient. A portfolio is
efficient if, given & certain return, no other portfolio exists
with an equal return with has & lower risk level, or inversely,
if @ portfolio exists with & certain level, there iz no  other
wich , having exactly the same rick, offers higher returns.

We are not going to get into a discussion on the methods
wsed to optimise and consequently select the portfolio (see for
example Sharpe,(19%50), as this is essentially timeless,
conforming at the most to a model of comparative dynasmics; and
the few dynamic models which have been formulated cannot be
considered as more than basic “"stochastic'" formuwlae which are
outside the area this study is focussing on.

Aamongest other things, our ahalysis is an attempt to study
the well knowrn  situation that ocourrs when an efficient
portfolio no longer is so, due to objective causes on the stock
market.

As & result, it is necessary to consider that, with time,
efficient - porfolios constitute equilibrium which under certain
circumstances, can lose its stability, giving way to & new
state of the system. . .
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We therefore need to  have & c3¢ler ) whiach explaing ther
Hecontinuities and changes sur-face of eqgudlibriam.
model  must  be  dimg i dynamic  and  we think it
approprigte  to use the posibilities offered by the catastrophe
theory.

0OFf all the restrictive hypothes on which the analyeis of
poartfolios A based (MPT, CAPM, ...), there are two which we do
not need to include in the present work.

-

In the first place, we &re nok going to restrict ourselves
to  the limitation of the temporsl hovizon. "That single,
common horizon allows ws to congtruct & single-period model .
The model implies that investars buy all the aseets in thedir

portfolic at one point of time and sell them at some undefined
but  comman point  in the  future.' (D.R. Harvington, 1983).
This hypatesis, ie in any case tatslly wunreasl and i

A . . r
unnecessary  if  we carry out the dyrnamic analysi
methads provided by the catastrophe theory.

& uging the

Also, we  will include the posgsibility of congidering
transaction cogsts in our analyeis, which not taken into
accouwnt in the present form of the portfolic peation theory.

The relaxing of the CAPM  model hypotheses permits the
treatment of situations such &se:
~ An dnefficlent portfolio could becaming efficient in time
(or become more inefficient).
~ The investor, coavering the transaction costs, can convert an
inefficient portfolia dinto an efficient one (or this is at
least what he hapes) by modifying its composition.

With the conclusions we reach from analysing situations
such  as the anes mentioned, we are able to study under which
circunstances &ll the efficient portfolios support the
buffetings of the market and pass from a state of equilibrium
ta another, determining the type of equilibrium achieved under
the new situation.

There it no reason to  believe that anly  one path of
behaviour exists e, whether the recovery of an efficient
equilibriwum dg achieved by means of transaction (huying and
selling securities) or by a situation on the market, different
points can be reached by different paths (hysteresis).
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TOPLCS ON THE ANALYSIES OF PORTFOLILOS.

aetion  of portfolios  wasg
v, it postaul
1L othe po i by 36
risk and

The firgt model For the
developed by M. Maxr kovite dn 1952, B i €
that the investor should choose, from beltween
investments, the one which minimize

o f
expected retuarn.

combinati
maximizes

sation  with more than one

As it concerns  an  optimig
portfoli

objective, o i reduced by arrangement
according to yield, and within those with ther
return, accovding to their level of risk.

same lLevel of

TF we use B to represent the expected return and & as an

adequate measuremernt for the risgk (normally the standard
desviation of the expected returns in the portfoliod, " the wet
of portfolios denominated as efficient can be represented by
figure 1, (Sharpe, 1990).

E

Figure 1. The efficient set and boundary

of portfolios.
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return will

A poartfolio’s
k of  each one  of  the = 5
factor the propoervtion of each security in the portf

The return, or profitability expec
normally referraed o & period L
determined on the basgis of future expect
dence as a referaenc Usual iy, this

@d  from a curity,

SONGMEG exercise), i

tions and  using past
s wsend:

Favmala

Dividends + P P
Dividends -+ IMt lth1

Retuwrn =

P e

where F’P‘Lt g the market price at the moment t.

Furemneernt

Somewhat more complex are the concept and the me
for the risk.

pfinitiaon of

able risk in the d
fry  the chif

The introduction of the vari
an  efficient portfolic Jugti

individual bebhaviour when faced with r

@rences in

risk, he  will

{ma up of
bhle low
ree

= Lf the individual comnpletely aver
gselect & portfolio with no risk
fixed-income securities ), even at the cog
return, or else he will invest all his capttal din
asset.

- 1If he z & risk  taker, he Fully enters intao Markovitz’s
analysis @g  he couwld be an dinvestor for a certain level of
risk/yield but not for another higher ane.

=~ If he iz & risk lover, he will choose those investments with
@&  high expected yield, withouwt botherimng shout the level of
risk . ’

v

Az the greater part of the "normal! dnvestors belong  to
the second ocategory, since when putting together a portfolio
they seek to control the risk (although not eliminate it), wer
need & form of measwrement for the risk.

Normally, risk ig ddentified with the variab Lty of
return. In  a natural way, this suggests that the variance ar
standard desviation of the expected value of the prof Larbilod by
be uwused e the measuremendt of risk. In practice, these
measurements have shown their wse ae opposed to  others which
appémr in Literature concerning partfolic analysis D.R.

Harringtaon, 1983) .

The suwggested measurement of risk ig  sufficient for
analysis of an  isolated security. However the risk of &
portfolio cannot be measured only as the weighted total of the
rizk of the yvields on each of the securi , & relation whioch
can be measuwred by its correlation or by ite covariance.

But when the portfolio has a certain nunbher of securities,
the excessive number of calcwlations  necessary makes the
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practical applicastion of this method doubtful .

To remove this problem, different versions of Markovitz ‘s
mece ) have been develaped, one of them being the CAPM (Capital
Asset Pricing Model). Instead of correlating the different
securiti amnangst themsealves, a paint of reference known as
the " market portfolic Y iz chosen, whiach 0o defined as the
portfolia Farmed of all the securit present in the market,
theidir participation in the portfolio being the same & it ods on
the stock market.

L4

i then defined as the covariance of
pect to the market return, that is tao
i thvex

A portfolio’s rvi
the stock return with re
sS&Y , the anly risk whiah i takers  cdnta
systematic one; while the non—systematic risk
i eliminated hy the formation of the portfolio.

s

"The CAPM reste oan  eight sssumptions. ‘Th@ firet five
assunmptions B of =3 those that wnderlie the efficientemarket

hypothegis and thus underlie both MPT and the CAPM. The last
three assumptions are necessary to creste the CAPM from MPT.

The eigth assumptions are the following:

1. The investor‘s objective is to maximize the wtility of
termingl wealth. .
Investors make choices on the basis oF risk and return.
Retwrn is  measured by the variance of these portfolio
returns . .
Investors have homogeneous expectations of rvisk and return.
Investors have identical time horizons.
Information ig freely available to investors. .
There is a risk-—free ssset, and investors casn  borrow  and
lend at the risk-free rate.
There are no taxes, transaction costs, or  other market
imperfections.
8. Total asset quantity is fixed, and all assets are miar ketable

and divigible. " ’

(D.R. Harrington, 1983, p.22).

LECEE A Y N

~N

Bazed on all these hypotheses, the CAPM hmdel allows the
investor to select the optimum portfolio according to his
preferences . '

The modal has & very extensive use and some of the market
hypotheses on which it ie supported bhave been conveniently
contrasted. But there are athers whose gene@ral vazlidity | is
doubtful; in particular for us hypoteses 3, 4 and 7.
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ANALYELS OF PORTFOL LGS .

CATASTROP
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i

complies with various requirements which, according to the
writers who have applied the methadoloagy of the catastrophe
theaory of the social  sciences, @are necessary  for  the
application of the said methodology to be considered adequate .

These requeriments are

BIMODALITY : the portfolios are efficient or inefficient and

eithaer of then produces a stable equilibrium.

HYSTERESILS : we have already commented on  the appearance of
thig phenomenan during the process of determining

the efficiency of portfolios.

SUDDEN JUMPS: it idis obvious that these ocour and may be due to
operations involving capital, cutes in dividends
and even for reasons outside the market which are
the most impoartant, given the frequency with
which they occur ‘and the unpredictability of

their appearance.

DIVERGENCE : (as: regards the risk associated ‘with securities
returns)  since two points united by neighbouring
paths [+%: 1] produce perceptibly different

behaviour .
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avce  of  anly  some  of
af dyrnanic behaviour by
, not only are all

Some auwthors shown that the exis
these requilreme justify the analysi
means of the catastrophe theory. In our <
the requirements fulfilled but others, which @re more important
from the poaint of view of theory, arae also  verified. Far
instanoce, the direct applicatiaon of the Morse lana and the

eplitting theorem.

In Faet ‘tiver investor &ssunes thatl  muet  choose e
proportions of assnetls X . which mues b herconne prar b ot ther

portfolio, in such & way that, at a given level of return  they
minimize the risk, or, with an acceptable level of risk, they
maximize the expected raturn, taking anto  account  that he
always wishes to maximize the value of the Ffinal wealth.

The optiman obtained is isolated, which allows use to  wuse
the Morge Jlemma and the splitting theorem not only in the
selection of one portfolio but for the wha portfolio family.

Let we begin then, although briefly, with & review of the
basic elements on which the theory of catastrophes rests and
then we shall see whether the selection of portfolios can  be
included in  any of the seven elementary ocatastrophes i
accordance with Thom’s classification theorem.

It is  not our intention to modify the portfolio by
congidering ‘the proportions of x, but to bage our analysis on
the performance of the portfolio through the control variables
we choose, such as its return ov rick, measured in the same way
as in the MPT or CAPM or any other models used for the
selection of portfolios.

We will consider a family of functions defined by
Vi PxCe—dR

in which P ig the manifold of the possible portfolio and &g we
have seen Pc R"*1 tincluding ©) and which we have named space
of variables of state. ’

C is another manifold CCRY which we will call space of
control factors.

Az we have seen, the analysis of portfolio selection i
based on the binary return-risk and determines the composition
Xml{X, ,. .. ,%X ), Zx, =1 meEsuming that the investor wigshes oy
maximize the value of his wealth mt the end of the period.

This gives an optimum portfolio, valid for a peridd which
we can designate by x=x(E,s), and we are not only interested in
knowing under what conditions 'this portfelio is no longer
optimum, but also when it will lose ite efficiency .

The methodology of the catastrophe theory assunes that,
locally. & portfeolio’s performance is regulated by the
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pmtential VlxE,s). In a more general way, V is taken to be
the Ffunction of x and &ll the control variables which are
involved in the processz. Therefare the potencial whii. ek

regulates the perfaormance of the process ocan be shown as
U((x)wvtx,m).

I V de the universal unfolding then the set of
catastrophes M, which dg a&lso & manifold, i the subselt of
RO7TART defined by:

Dva(x)mo

In other woards, the get of all the critical points of &ll the
potentials V¥  in the family V. The szet of e M owill
be & manifold if U, which also e, repraesants the wuniversal
unfolding.

By restricting M, mapping - the natural projection, wer
obtain & map X defined by:

ri=1 r

TE: R xRT 3R being 1T (x, )

gstarting with X, which is known as the catastrophe map, wer
obtain the set of gingularities 8, which will be the set of
singular points in M, according to X, for those for which X is
singular, i.e. that the range of the Jacobian matrix D, is
less than r (dimension of the space of control variables) .

The image of the sets in €, according to the map X , Q.8
known as the BIFURCATION SET 1. It dis evident that 8 isg the
set of degenerate aritical points.

8 i= called bhifurcation set because it  is the set over
which the number and nature of critical points change and,
considering the structural stability of the Morse functions,
suweh changes oan  only take place by passing through a
degenerate critical point.

187
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LN CLSP

If we take veturn and risk @8 ocontrol Vi
“emner phviosn, Froam the

iy, via & i
inta & potential function for  uwundversal
ey only  two paraneters. Among  the
seven elementary ocatastrophe

s

catastrophe in cusp.

representa

and
iy

The wuniversal unfolding is:

“y
Vexd = xThuxTiux

The SWUr Face
o dn the ovcinary space, is given by tF

of arepud Libridwm M, wivi ey allows 3

Vr{x) = 4xd+ﬁux+v m €

the degenervate critical poirnts (singula are  given,

the same way, by the subset of M which

VHOx) m 12xTRn = O

If we eliminate x from the last two equations, we abtain:

all
of ¥V changes

"

iz w0

This equation determines the bifurcation gel B, the set of
af the control space Cda,v?) in e wheaere the form

points

SGhogure 2, and we have aleo

Its representation ig shown in

photured the stability of equilibriuwn. et of the bifurcation

set there i only one point of stable ec Librdam (mdndmam
potential ) : this means that the portfolioc will either be

aefficient or inefficient, with any other intermediate position.
Within the bifurcmtion set (get of degenerate critical pointe)
there are three pointes of equilibrium Ctwo  minimumg separated
by & maximum) , two stable and one unstable.

With reference to the behaviour surface of portfolios

(fFigure 3D, @wnd taking into account that the analysis carried
out ig lacal, the majority of auwthore on the catastrophe theory
interpretead L her BT (shadowec) carvesponding to  the

bifurcation

if
however small

@t @e an inacocessible region.

In our model this arvrea is significant, in the sense that
the portfalio e located in thig regiaon, any disturbance,
, wWill take it to the higher ST face (eefficient

portfolics) or to the lower one (inefflicient portfolios).

is

Also, in figure 3 we represent the bhifurcation set, that
the projection of the surface on to the control space (u,v).

The projection of the surface folds define the boundary of the
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o

Figure 2. Situation and number of the equilibrium points

and their stabil
(Saunders 1983,

ity in the cusp catastrophe.
p.12)
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BEHAVIOR OR
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SURFACE
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{response variable)

(normai tector)
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CONTROL O,
SPACE Kl

\

{spiitting Iacion

Figure 3. The behaviour surface and this bifurcation set
of the cusp catastrophe. (Flay: 1.978, p. 337)
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bifurcation set.

Parameters of the control space w and v o oare called
separation factor and normal factor respectively. In our ¢
we have identified them with risk and return of & portfolic.
On the upper right~hand part of the surfaoe lie portfolios
preferred by investors, the efficient ones, characterized by
high return and low rick. If return falls and level of risk
remains acceptable, the portfolic becomes ineffi it Following
a egmooth path, such asg a-b-c-d (figure 4). Nevertheless, when
rigk increases mnd return decreases following the  a- d  path,
i.e. in an unemooth way, there is a suwlden jump to the surface
representing inefficient partfolias. (Dexr ey perfect
convention).

>

Since the variables w (risk measuwred by means
and v (return) can be gquantified, bifurcation set
settled Ffor arareb pair [QUIPRVD N The T ATy} of unstahble
equilibrium dg then wnivacally determined and congequently the
boundary hetweean the set of efficient ana ficient
portfolios.

&rly tao our analysis
anly va i far those

#1y8 That , both for

We would like to point out that, simi
of portfolic selection, our spproach
investors having & "normal’ risk-—ave
those who are Lotaly averse to and for wer who love taking
risks, this analysis ig either partial us Loor us 5 . This
fact restricts th model ‘e Field of appli Ldon and although
the group of investoreg remaining outside it i, § smaxll, it dw
etill dmportant, and for & reason we will consider a wider
approach embracing of investoars.

There dis another problem, in our  opinion more dimportant
than the wsbove, ancd that limite the applics e of thie model :
the catastrophe’s theory states that once & new stabhle
Abriaumn reached and it bde & mot convendient situation,
hag Lo remake all the analys

b whio hae &an

In ouwr case this means that ‘Lher inve
“deient povtfolic showld keep it, since that in order o
“arm it o dnto an CRacdent  one  he  wowld  have Lo pay
<ol an wi I, m, are not allowed in
the analy portfolic

The possibaili From

capital or from divic

Lty of thea
nde )

s oare e to the fact thst
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i. 1 ther tra
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EFFICIENT

INEFFICIENT L
PORTFOLIOS

Figure 4. Two different paths leading to the same point:
one smooth and other one with sudden jump.
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regulates the process, anmplifies owr Field of action as far as
the number of control fac

contraol s af greater dimension.

concerned; Ao we choose i3

XV

Lbhle catastrophes: the
g cthat Wil

We face two po
the buttevfly. oy ¥
fallowing exposition, we are carrying out
applicaticen of the butterfly catastraophe.

THE BUTTERFLY CATASTROPHE

The universal unfolding ig in the form:

Y N
' X 2 o
Vx> = x®+tx4+uxd+vxh+wx

' e

where t, w,5v, w, are the control factors. AE Wwe Can s
control Gpace  hae dimension 4, and thaerefore we  cannodt
repraesent bifurcation set B.

There are several ways Lo approasch th stachy of the Form
of the bifurcation get, bruet the omne leasding & more evident
graphic wae carried out by Brocker and Lander (197%), Saunders
C1aso0s, and, Postan and Stewsrt 1978) . We mre following the
analitic develapment formulated by Saunders.

Initially, and considering t and w as constants, we study
ther form of the differant subsetls B, , which will provide we
with & great deal of information abouwt the bifurcation set.

The surfmce Of equilibrium M bis:

3

iy o w
Hx 744t x4 BUR TR BUX bW = O

The set of degenerate criticual points Cgingularities) is  the
subgset of M which also verifies the following equation:

Box T 12t xThGuxtay = ©

This system of equations allows us to define v and w as @
function of the ather variables, and  which therefore
determines, fixing t and w, the B CUT Vs . Thus, [ for
t o= w0, we obtain ag an equation for B

MU

"t
/1537w (uspart
then Boo is @ cusp.

To analyse the behaviour of B for other valdes of t and w,
different from zeva, we  must mqnsid@r vay (x> and w=wi(x), in
such & way that its critical points satisfy an equation of the
type: i
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20xpatxtu = O

real raoot, and therefore B will have
and 3 iF all the rools are veal; that

m
w

2 3
Wik AL /B < 0

This condition cannot be satisfied LFf L s positive and .t i

for this reasorn that
we really have a catas

1t ds called the BUTTERFLY FACTOR, bhecause
strophe of this type when this Ffaotor

varies, and then we are able to move from one to three cusps.

i posit

8o, when the cantrol factor t of the butterfly catastrophe
ive the hypersurface of unfolding of this catastrophe

ig very similar to the surface of unfolding in cusp; the only
difference ds that instesd of being falded in curves, it is
folded along whole surfaces.

The contral factor w is known as the BIAS FACTOR, due  to

the fact that Btu is symmetrical to the axis v only if w = 0.
This factor, which plays the same role in  the swallow  tail
catastrophe, e not very gignificant for ouwr purposes if we
congider it without the butterfly factar.

et movmal  and

As before, w and v, are  still clerryonmd ract

separation factors, and  they have the same significance and
role ag the in the case of & cusp catastrophe.

I we assume that the butterfly factor has been previously

fixed and s negative, and that the bias factor vanishes, the
graphic representation of the behaviowral surface of the

butte

1y catastrophe wowld be gimilary  din form to that in

figure 9, din which the control space for +the control factors
(v,w) hag been projected. "

We shouwld point out that & third surface exists between

the two had in  the cusp catastrophe. Our dnterpretation of
this surface is as follows:

IF an dinvestor has an inefficient portfolio he can  change

and go from this to an efficient portfolico by means of the sale
and/or purchase securities. But thig incureg exXpenses . AS @
reswlt, the butterfly factor which, as we have seen, must bhe
negative for this thircd surface to appear, ¥ interpreted in
transaction coste.

¥ the investor findeg that he hag & portfolio which is  on

the third surface, he will be faced with the following problem:

"I oam interested in incurring transaction costs (buying
and selling) provided that the additional return that I
obtain az & result of moving up to the gset of efficient
portfolios is greater than these costs; I do not mind if
they are the same and if the costs are greater than the
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Figure 5. The butterfly catastrophe when the butterfly
factor t is negative and the biaus factor is
null. (quy 1978, p. 339)
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In figure 7 we ocan the evolution of the section of the
hifurcation set for different values, positive and negative, of
toand . We must mention that the '"pocket' appesrs when the
biass factor is muwll and the butterfly factor negative.

We are  now dn canditions o i e the corvect
interpre ion of  the bi Factor w, according to our moadel .
Above we mentioned the need to apply the model only to those
investors  who behave in & normal way in front of risk. In ouy
model the possibilit i pmm@assing an  opportunity portfolio,
in  other wor Fand the portfolio on the third surface, is
only possible faor e dndividual who are not biased, meaning
that they have & null value of control factor w.

%

On the other hand, both the pogitive values and the
negative values of the bias Ffactor o make the third surface
cdisappear from the set of portfolios (even in the event of +t
being negative) and in  the projection in the space of the
control variables the characteriztic "pocket" disappears from
the butterfly catastrophe me can be seen in figure 7.

Also in figure 8, we have the graphic rvepresentation of
the behaviour’s surface, assuming that the biss factor takes
LCther negative and pasitive values. The pasitive bias fmctor
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W

Figure 6. Transversal section of the bifurcation set of
butterfly catastrophe when u=0, t< 0. There
are drawn the situation and number of the -
equilibrium points and their stability.
(Saunders 1983, p. 68)
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Figure 7. Butterfly catastrophe. Section corresponding to
various values of t cnd u, viewed in the

(v, w)-plane. (Poston and Stewart, 1981, p. 178)

Figure 8. The butterfly catastrophe surface when the
factor t is negative, showing the effects
of bias u. (Flay 1978, p. 338}
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can  be the behaviour of an investor "rigk-lover"” and the
negative bias factor the behaviour of the "total risk-averse
Finally, the butterfly catsstrophe model corrvectly explains the
behaviour of an investor who faces the risk in & normal WaBY ,
that isg, he ic not biased by the risk.

CONCLUSIONS

In this article I have tried to eliminate some limitations
of traditional analyegis in portfolio selection. Specifically:
The model is a dynamic one
— I have taken into congsideration

variables (return  and variance), transact
attitudes of investors when Facing risk.

the

wel

I order to extend this model T hasver
Theary methodoloagy, taking the portfolios
surface and the expected return and  the var:
variables .

T have shoawn that:

can be doane using the catastrophe in cuep

= the analysis
portfolia, morphology
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this model Qe drsur

Cratare, VET I ance,
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june 1986
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