716 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

GENERAL SYSTEM DYNAMICS SIMULATION
SOFTWARE SYSTEM ~-- ZU-DYNAMO

Wenhua Wu, Chingrui Xu, Shaozhong Jiang
Dept. of Industrial Engineering
Zhejiang University

Hangzhou,

P. R. C.

ABSTRACT ,
System dynamics modeling has been applied in a wide variety of

areas. However, as a means of
thére is no any general DYNAMO
in various types of computer.
deal with a general compiler
is used to simulate models in
outputs in English or Chinese.

simulating models in computers,

compiler system that can be used
The purpose of this paper is to
software system 7ZU-DYNAMO, which
various types of computer with
Being different from traditional

method, a new idea suggested in this paper is the selection of

C language instead of assemble

language as objective code. The

aim of such selection is to make ZU-DYNAMO independent on a

particular computer. The overall
of the system are presented. The
in the system, and the structure
and analysed. The description.of

structure and design principle
algorithms and technigues used
of objective code are designed
extensions of Arrays, FOR card,

etc. and the ways to implement are also given.

I. INTRODUCTION

With the further development of System Dynamics, it becomes
‘more and more important to develop a general DYNAMO software
system that is independent on a particular computer. The usual
DYNAMO compiler system being dependent on one type of computer,
has set a limit to wide applications of DYNAMO modeling. This
paper intendé to introduce a General System Dynamics Simulation

Software System -~ ZU~DYNAMO (ZU

is abbreviated from '"Zhejliang

University") developed by authors, which is a translator and

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 717

compiler for translating, compiling and running continuous
models with outputs in English, or Chinese.

In the development of DYNAMO system, traditional method is
constructing a'compiler to translate DYNAMO cards into assemble
language code or machine instructions. Because these low-level
languages are dependent on one type of computer, this method
make it difficult or impossible to transfer DYNAMO system:from
one computer tq other, Being different from this traditional
method, a new idea was suggested in the development of
ZU-DYNAMO system, which is developing a tramslator to translate
7U-DYNAMO cards into an equivalent C language program, and then
referring the C compiler installed on the computer to compile
this C program, finally generating the running code to simulate
models. The illustration of this design idea is shown in Fig. 1.

ZU-DYNAMO was coded in structured language C that is called "
system design language " and possesses the features of short
but strong and capable. Consequently, the running code of the
system is very efficient and runs fast. In order to make the
7ZU-DYNAMO useful and helpful in simulation of big models, the
system provides not ‘only the fundamental functions of DYNAMO II
but also the extensions of Arrays, FOR card, WHILE card, IF card
and Macros. The algorithms and techniques to implement these
functions will be describled .in the following. But in the next
section, we will first introduce the overall structure and

design principle of the system

TI. THE OVERALL STRUCTURE AND DESIGN PRINCIPLE OF THE SYSTEM

The whole system is constituted of five large parts :Syntax and
Semantic Checking Program, Equation Ordering Program,Automatical
Translating Program, Compiling & Linking Program and Running &
Output Producing Program. The whole system is controlled by

Master Control Routine. The overall structure of the system 1is

given in Figure 2.

Dynamo cards.

ZU-Dynamo System

{model)

Syntax Analysing &

Code Translating

C language prosram

Syntax and Semanti
Checking Pro.ram

C Compiling &

Linking

running code

Running &

Froducing Output

ka:ular ou

tput

" piotted ou

Figure 1: The Illustration of Design Idea of the System

Master Control Routine

Equation Urdering
Yrogram

'

Automatical
franslating Program

Compiling &
Linkin, fProgram

tput

muuming & Output
Pruducing Program

. N
Lexical Local Global || & Equatior]| S Equation| |N Equation] Local Plobal Code|| Compiling Linking running Tabular Flotteo
- Syntax Semantic . '
Analysis Analysis Analysis Ordering Urdering Urdering | {Iranslating | Generating Uutput Output
‘Module Module || Module || Module|| Module || Module |{ Module Module Module || Module Module || Mo:i:le Module

«

Figu;e 2: The Overall Structure of the 2 U-DYNAMO System

VNIHD *ALIDOS SOIWVNAQ WHLSAS HHL 40 HONHYHANOD TYNOLLVNYAINI £86T WHIL 8IZ

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 719

The Syntax and Semantic Checking Program was developed to scan
the model and to check the syntax and semantic of DYNAMO cards
in the model. This program is constituted of Lexical Analysis
Module, Local Syntax Analysis Module and Global Semantic
Analysis Module. The Lexical Analysis Module called the Lexical
Analyzer, or Scanner, separates characters of DYNAMO cards in
the model into groups that logically belong together; these
groups are called tokens. The usual tokens are key words, such
as PLOT or PRINT, variables, such L.K or R.KL, operator symbols,
such as + or *,'and punctuation symbols such as commas oOr -
parentheses. The functions of the Local Syntax Analysis Module
are to check the syntax in each card, including the checks for
the legality of variables, for the correctness of expressions,
for the completion of function references and for the exactitude
of time subscripts; In the mean time, the variable name defined
in each equation was recorded to the table of variable names.
The Global Semantic Analysis Mddule, and then, checks whether
variables used in the right qf'eéuation are defined, and whether
each level variable has initial value defined by N equation. If
the errors were detected, the error messages are displyed and
the locations where the errors were detected are approximately
pointed out. Only when there is no any error in cards, can the
DYNAMO cards be sorted and reordered, and translated to the C
language program. ' ’

The Equation Ordering Programvarranges in the proper order of
computation among equations, Unlike the level and rate equation,
the Auxiliary equations or Supplement equations, or Initial
equations cannot be computed in arbitrary order. Some A equa-
tions could be components of others, and must be computed in
‘the proper order so that one can be used by the next. The
Priority Coﬁputation Variable Set is used to order ﬁhese equa~-
tions. When this program discovers a group of equations in .
which none can be computed without first knowing the value of
one or more others in the group, the simulataneous equations is
reported. In the matter of.algorithm how to order equations, we
will describle it in the next section. Only when the proper

720 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

order has been arranged by this program, can the correct object
code (C language code) be generated.

The Automatical Translating Program is the kernel part of system.
It translate the correct DYNAMO arranged in order into an equi-
valent C program. The Automatical Translating Program is con-
stituted of Local Translating Module and Global Code Generating
Module. The Local Translating Module translates each equation
card into an equivalent C . statement in terms of the syntax of C
language. Because the equation in DYNAMO is similar to the
assignment in C language, the equation cards can be easily con- °
verted to the C statements with few modifications. On the base
of these C statements, the Global Code Generating Module gene-
rates some global C statements such as the declarative statements
to specify allvariables, the repetitive statement "for" to
control the simulation cycle, the data store statement to store
the values of variables plotted or printted in data file, and
the assignments to assign the values of K or KL variables to J
or JK variables for the simulation of next time interval,

The Compiling & Linking Program is composed of Compiling Module
and Linking Module, The Compiling Module invokes the C compiler
installed on the computer to compile the C language program just
‘converted. And then, the Linking Module invokes the linker to
link it with library of DYNAMO functions to implement in C and
the library of C language to generate the running code. The
Compiling Module uses the system calling statement provided in
C language : system("Compiling Command in the computer“) to let
the computer ompile the C language program. Simularly, the
Linking Module also invokes this system éalling : system("
Linking Command in the computer") to let computer link them.
Because the compiling and linking commands are different in
various types of computer, the two system calling should be
modified in terms of the formats of commands in the computer,

The Running & Output Producing Program is constituted of the
Running Module, the Tabular Output Module and the Plotted

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 721

Output Module. The Running Module also refers—the statement of
system calling : system("Running Command in the computer") to
let computer execute the running code and simulate the model.
The Tabular Output Module is very simple, here is not discussed.
The Plotted Output Module is very complicated. First, it cacu-
lates the scales of variables. And then, for each time interval
y a set of values of variables are read from data file and are
sorted. Following these, the Plotted Output Module begin to
plot from the left to the right, in terms of the ascending
values Just sorted. This process is repeated until the results
of simulation in all time intervals have been plotted.

According to the structure of the system zupq function of each
program in the system presented above, we can give the design
principle of the system. The illustration of the design prin-
ciple of the system is given in Figure 3. First, the Syntax
and Semantic Checking Program parses the DYNAMO cards inpﬁtted.
If no error was detected in the cards, the Equation Ordering
Program begins to order the DYNAMO cards with no error. And
then, the Automatical Transiating Program translates these
DYNAMO cards ordered with no error ifito an equivalent C
language program. The Compiling & Linking Program compiles
‘this C language program, and links it with the library of
DYNAMO functions and the library of C language to generate
the running code. Finally, the Running & Output Producing
Program executes the running code, simulates the model and
produce the tabular output or plotted output.

IIT, THE ALGORITHMS AND TECHNIQUES DESIGNED IN THE SYSTEM
In this'section, we will déscrible the important algorithms
designed in the system. These algorithms have been programmed

in the ZU-DYNAMO and run very well.

Operator Precedence Parsing Algorithm

In a DYNAMO model, most of all cards are equations, and the
basic format of these equations is

722 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

DYNAMO cards inputted

'DYNAMO cards inputted with
no error ‘

y
Equation Ordering Program l

DYNAMD cards orderd with

e no. error
Master .
Control Atomatical Translating Program
Program .

An equivalent C language
program '

Compiling & Linking Program

Z
Libray of
DYNAMO functions

Running code

y .
\ Running & Outpﬁt Producing Program

Results(Tabular output or
plotted output)

Figure 3: The Design Principle of ZU~-DYNAMO System

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 723

quantity-name + expression
So the key of syntax checking is to parse the expression. In
the 2U-DYNAMO system, Operator Precedence:Parsing Algorithms
in the Syntax and Semantic Ohecking Program has been designed
to parse the expression in the equation cards.

In the DYNAMO language, the expression may be anyihing from
simply a number of quantity to a very complicated combination
of factors and terms involving functions , quantity names and
numerical values., The operations of addition, - substraction,
multiplication, division and exponentiation are indicated
respectively by +, -, *, /, **. According to the definitions
‘of expression above and the rules of the notation:called BNF
(Backus Naur-Form), we can give the operator grammar which
have no two adjacent nonterminals : ‘

E—>E+E|E-E | E*E | E/E | E*>*E | -E | (E) | id (1)

where E is an abbreviation . for expression called nonterminal
éymbol,'id represents variable or numerical value or function
. reference called terminal symbol, the remaining symbol are
terminals.

In operator-precedence parsing, we use three disjoint
precedence relations,<g,;zand 9; -between certain pairs of
terminals. These precedence relations guide the selection of
handles. If a<b, we say a "yields pzievcedence to" b; if axb,

a " has the same precedence relations as" b; if a >b, a "takes
precedence over" b, Although these relations may appear similar
to the arithemetic relation "lesé than", "equal to", and
"grater than", the precedence relations have quite differemnt
properties. For example, a »b does not imply b< a.

Now we show how to compute precedence relations of the grammar,
Let G be an ¢-free operator grammar, For each two terminals a
and b, we say : (P, Q, R.is nonterminal)

1) axb if ther ia a production of the form P—>....abe. OT
P—».,..aQb... where Q is nonterminal. Thas is, axb if a

724 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

dppears immediately to the left of b in a right side, or 1if
they appear seperated by one nonterminal, For example, the
production of E —w (E) implies that (=),

ii) a<€b if there is a production of the form P-»...aR..., and
R=>'b... or R=>Qb.,.. . That is, a<b if a nonterminal P
.apperas iinmediét‘ely to the right of a and derives a string in
which b is the first terminal symbel. For example, in grammar
(1), there is E—=E+E and E=>(, s0 +<(,

iii) a pB if there is a production of. the form P—P...Rb..,
and R=>%,,.a or R=s"...aQ. That is" a 9b if a nonterminal
appearimg dhmmediately to the left af b derives a string where
“last terminal is a. '

If the precedence relation <,x and » constructed as above are
. disjoint in operator grammar G, that is, for any pair of
terminals a and b, never more than one of the relations a<b,
a=b, and a b 1s true, the operator grammar is called the
~operator precedence grammar. It is evident that Grammar (1) ie
not an operator precedence grammar because two precedence
relation +>+ and +<+ hold between + and +,

In terms of traditional associativity and precedernce of the
operators, grammar (1) can be transformed int0 an equivalent
grammar that is both operator-precedence and unambiguous}It is

E—E+T | T (2)
E—E-TIT ' (3)
E— T*F | F (%)
P—T/F|F o . . (5)
F —= P**F | P " . (6)

P— (E) [id , (7)
' (8)

According to the method of computing precedence relations and
the productions (2)--(8), the operator precedence relations
of above grammar can be goEstructed, and shown in Figure 4. .
(Blanks denote error entries, # is a special symbole which

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 725

marks the ends of string checked.)

+ - * / ** | id | () #
+ >l 7] £ < L £ & > | >
-yl e« el >
* > > > > <& < LK V2|2
VA - - > <<l > >
e > d | | 2l || > >
iaf » |>}| » | » | » < |«
(< 1 <L < <& < £ | < =
Y>>l > > | > 7|7
Fl « | < | < ¢ | €1 <€ | <

Figure 4, Operator Precedence Relations of
Grammar of Expression in DYNAMO

Now let us explore how a Operator Precedence parsing algorithm
is built from precedence relations that one constructed from an

Operator-Precedence Grammar((2)--(8) above) in DYNAMO
language. The stack is used to store the terminals and
nonterminals. The input of this algorithm is the precedence
relations and an input string of terminals (i.e. the expression
in an DYNAMO equation), Let the input string be aiaa... an#e
Initially, the stack contain #. If only # is on the stack and
is on the input, the input string is correct and accepted.
The algorithm in detall is shown in Figure 5.

The Equation Ordering Algorithm

Because the ordering algorithm among N equations or § equations
is similar to the algorithm among A equations. Now we only
consider the Auxiliary equation. ordering algorithm among A
equations,

726 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

Repeat Forever
if only # is on the stack and only # is on the input
then. v
accept and break /* the string is correct */
else '
{ _ _
let a be the topmost terminal symbol on the stack
and let b be the current input symbolj;
if a<4b or a=b then _
‘ shift b onto the stack
else .
Cif a>b then ' /* reduce */
- Repeat '
pop the stack
Until the top stack terminal is
related by < to the terminal
most recently’poped
. else
call the error correcting routine

}

Figure 5. Operator Precedence Parsing Algorithm

We assume, there are m Auxiliary equations in DYNAMO cards in
the moqél inputted by user.In order to deal with conveniently,
we may give a number to each Auxiliary variables from 1 to'm
according to the order of inputs, Priority Computation Variable
Set PCVS S[i] for some variable Ai (1<i<m) is introduced, which
is defined as the set of the numbers of variables, which are

in the right side of ith Auxiliary equation.'that is to say,
only if all variables in Priority Cdmputation Variable Set S[il
for ith Auxiliary variable have been computed, the ith Auxiliary
Variable then can be computed. '

'For example, we assume 5 Auxiliary equations appearing in the
model inputted are: '

A DFR.K=TABLE(. TDFR,IAR.K/RSR.K,4,12,4)

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 727

' RSR,.K=SMOOTH(RRR.JK,DRR)
IDR.K=A1R*RSR,K+DFR.K
DDS .K=IDR.K*RRR.JK
INSTP.K=STEP(20,1)

> o= e e

It is known that TAR.K is level variable, We give a number 1
to DFR.K, 2 to RSR.K, 3 to IDR.K, 4 to DDS.K, 5 to INSTP.K,
According to above definition, the Priority Computation
Variable gets for 5 Auxiliary variables are: ‘

3011=127;3
stel=0 13
S5033=01,21
S[EI=031;
S[51=0 I

It is evident that variable whose PCVS is empty should be
arranged to be computed first, because this variable has not
refered any Auxiliary varirble. If there are two or more
variables whose sets are empty, it may be arranged in arbitrary
order of these variables to be evaluated. These variables
.arranged don't be considered after. 1o the above-mentioned
example, S[2] and S[5] are empty. So 2th variable should be
arranged to be evaluated firstly and S5th variable secondly, or
Sth variable firstly and 2th variable secondly.

Now, we try to find which variable should be computed thirdly
in the above-mentioned example. We delete the numbers of
variables that have be arranged to be computed from the left
sets which these numbers of variabies belong to. If there is a
variable whose sets is empty, this variable is arranged to be
computed and the above process is repeated until the all
variables are arranged to be computed, If there is no any
variable whose PCVS is empty and no all variables are arranged
to be computed, the error occur and the error message "
SIMULTANEOUS ACTIVE EQUATIONS IN INVOIVING" should be displayed

The Equation Ordering Algorithm has been given in Figure 6. It
is noted that the input of algorithm is the Priority

728 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

Computation Variable Sets for all Auxiliary variables which
are given numbers from 1 to m. The output of the algorithm is
the sequence of computations for all variables. In the above-
mentioned example, the proper order of computations is 2, 5,
1, 3, 4, or RSR.K, INSTP.X, DFR.K,IDR.K, DDS.K.

define FINISH 1

define NOFINISH 0
end=NOFINISH;

while (end==NOFINISH)

Find all empty sets, inAthe left sets;
if (there is no any emptjiset)
.{ :
print the error message
"SIMULTANEOUS ACTIVE EQUATION IN INVOLVING";
}
else

{

Arrenge the variables whose PCVS sets are empty
to be computed first; '

Count the number of the variables which have

’ been arranged;

Delete the Variable No.s whose sets are empty
from all left no empty sets, to which these
Variable No.s belong;

}i

if (the number of the variables arranged are equal
to the number of all variables)
{
end=FINISH

}

Figure 6. The Equation Ordering Algorithm

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 729

The Translation Method and The Structure of Objective Code

The translations may be devided into two parts of local trans-
lation, or called the preprocess of the translation and code
generation. The first work of. preprocessing is to delete all
type symbols N, C, T, L, A, R, S from each card, because these
symbols are no useful and can not be recognized in C language.
The next work is to delete all point "." appearing in time
subscripﬁs «Jy K, .JK and .KL in each cgrd, since the point
"." can not accepted in the name of variable by C compiler.
After these deletions, the DYNAMO eqﬁation cards have been
ghanged to the legal assignments in C language, and the
variable L.K L.J R.KL R,JK have been changed to LK LJ RKL RJK
respectively. So theother work is to concatenate "J" or "JK"
witk L, A, R variable in initial equations., In the base of
these, the system generates the declarative statement, initial
statements , repectitive statement, data store statement,etc.
These C statements are organized in the following format shown
in Figure 7. 1In other word, the structure of objective code
is .given in Figure 7.

the declarative statemeﬁts;

the assignments for computing initial values;
(Ld=e.ej AJ=... 3 RJIK=...)

number=(int) (LENGTH/DT + 1;

for (i=1; i = number; i++)

time= i*dt;
IK=£1(AJ,LJ,RJK);

A1K=f2(RJK,A2K,IK);

RKL=f3(RJK,AK,LK);

SK=fl4(LK,AK,RIK,52K); iieees
the statements to store dataj;
LJ=1LK; ... AJ=AK; ...} RIK=RKLjs.s

¥ |

the statements to print or plot;
Figure 7, The Structure of Objective Code

730 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY, CHINA

#include

‘ Following is & example of translation. The DYNANMO cards in
the model inputted by user shown in Fig. 7 are translated
into an equivalent C program shown in Fig, 8 by ZU~DYNAMO.

"stdio.h*

double time,dt:
main()

<

w

double
double
double
double
double dirg
double dudj;

int i,numbery
double idrj,idri;
double isrj,isrks
double,
double
double
double
double
double
double

durs
arrs
airs

ssrjk,ssrkls
pdr ik,pdrkl;
srrjl,srrikl;
recikyrrrkls
uor jyuor ki
iarj,iark;
double rsri,rsrks
double uodj,uadks;
time=0.0;

dt=0.50;
length=18.5;
prtper=2.5;

pltper=0.5;
dur=1.03
drr=2.03

iar j=air#100.9;
idrj=air#rsrj;
isri=idri-iarj;

instpi=step(20.0,1.0);

ssrjk=uorj/dur;

pdrik=isrj/dir+rsri;
srrik=uadj/dud; =
rrrik=100.0+instpJi;

number=(int) (length/dt)+1}
for (i=lji<=number;i-++)

{
time=ixdt;

Cuork=uor j+dt s (rre jk-ssr 3k 3
iark=iar jtdt#(srrjk—ssrjik);
rsrk=rsrj+dt¥(1/drv) #{(rrrjk-rsri);
uvodk=uod j+dt* (pdrik-srrik);

idrk=air#rsrk;
isrk=idrk-~iark;

instpk=step(20.0,1.0);

ssril=uork/dur;

pdrkl=isrk/dir+rsrk;

srrkl=uvodk/dud;

rrrkl=100.0+instpk;
{({{time—dt)%ipriper)==0)

if
storedata(fni);
if
storedata(fn2)
idr dris
isrj=isrks
instpi=inatpk;
ssrjk=ssrklj
pdr jk=pdrkl;
srrijk=srrikl;
rrrik=rrrkl;
uorj=uorks
arks;
rsri=rsrhk;
uod j=uodk;

b3
b

output (fnl1,4n2);

length,prtper,pliper;

instpi.instpk;

(((time-dt)%pltper)==0)

°L 8y

MIALING/5 " E=MTd1Md/S 8T

Pagindut Topom eyy uwt SpPIBO owsulq eyy

=10 © J34S

(&}

HLGNI /5"

5'0=

X
o
X
X

ANINA

=¥G51/

(GOT*QOT-)N

MMM O=MHS d=M0d* g

HSSU=NEN 10T
(‘o aon

*/(ZCOIMAT %/ (ZC0IHSH/ (Z40) JISNT “ »

MON/ (OOT 0 M=

(GOF*0) N=00N* 1=HaT"* T=MVI ‘g

.

/(Z M HAA # %/ (2 0y NET ¢

/az‘b)auu‘*‘*/(z‘o>aon/gz‘0)ass‘*‘*/(z‘O)HVI/(z‘n)HHs‘*‘*

a

0 Z=ana

Pig. 8. 4n equivalent C program translated by ZU-DYNAMO

3
o
a3
a

NI1a
0 =M1y
0 Z=Mya
0°1=Mna

(O 00T)Y (HIY) =My

(0 001) (ana) =aon

(2 bt

N

N
g
N
©

=484

hEATeR

O

A HLENT

(T402) 4318

A ALSHI+O

anas:4-aon

(HF'HHS—MF:HQd)(JG)+F'GDH

DCADDrACC

NS5

(NP'HQS—MP'HHS)(10)+D'HUI=H‘EUI

A °H0N

TATMNS

RE]

42401

A"MEM) (MTH)
MG /480N

#

ATMYI~
(£ HSH~NL "HMH) (MMA/T) (LAY4L " NG

¢

ATHSHE (MIA/H M) =T

OIL "HSS—HD “HHM) (LAY +0 *HON

‘-

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 731

IV. THE EXTENSIONS OF BASIC DYNAMO

The ZU-DYNAMO was developed to process not only the basic
functions of DYNAMO, but also the extensions of Arrays, FOR

" card, WHILE eard, IF card, Macro and many other functions. The
users may use these cards like other basic cards in basic

- DYNAMO. It is suitable to simulate the big model.

Arrays And. FOR Cerd

‘The ZU-DYNAMO extensions for arrays are in the style of DYNAMO
III. The array features offer convenient notational scheme.
The FOR variable is used as the subscript of ‘array. The format
of arrays and FOR card are similar to the ones in DYNAMO III.
But in the ZU-DYNAMO, the FOREND is used in the €0d of body of
cycle. The format of FOR card is

FOR fori=lowl, upl/for2=low2, up2 cso
ees . cCards oo
FOREND '

The system translate above FOR card into the following C
statement:

for - (forl=lowl; fori<=upl; forl++)
i ' '
statements;

While an array is used in the model, ZU-DYNAMO first generates
‘the declarative statements to sepcify'the dimensions, sizes
uand-data'types of array. And then, the parentheses "('" and ")"
in the. element of the array A.K(I) are replaced with "[" and
"J” respectively, because the element of array in C language
reprents AK[I], not AK(I)

WHILE Card

ZU-DYNAMO also provides theWHILE card that DYNAMO III has not

732 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA

provided. While a number of cards should be repeéted to be
computed in a certain condition, the WHILE card may be used.
The format of the WHILE card is ’ » o

WHILE condition
cards
WHILEEND

Where condition is the boolean expression that is composed by
boolean operator <, <=, >,>=, ¢> and ==, A K+B.K>=0 is a
example of boolean expression. The above WHILE card can be
translated by zU-DYNAMO into;

while(condition)

statements;

5
FOR example, the cards

WHILE A.K+B,K>0

A - C.K=A.K/(A.K+B.K)
A D.K=B.K/(A.K+B.K)
A A.K=B.K-10
WHILEEND

are translated into the C statement‘@y ZU=-DYNAMO as folloWing:

while(ak+bk>0)

{

* ck=ak/(ak+bk);
dk=bk/(ak+bk);
ak=bk-10;

b

The ways to implelent other extensions of cards arevsimilar°
The other extensions of cards in detail will not be dealt with
here owing to the limitation of space.

THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 733

V. CONCLUSIORS

According to the above-mentioned introduction, it may be seen
that general compiler system ZU-DYNAMO has &an advantage over
usual DYNAMO compiler system. On the one hand, it take shorter
time to develop ZU-DYNAMO than to develop usual DYNAMO, because
the code generation is easier in ZU-DYNAMO than in usual DYNAMO.
In ZU=DYNAMO, the objective code is C 1anguage code, and the
‘equation cards are simular to the assigoments in C language.-
‘Therefor, the translations from DYNAMO equation cards to C
assignments, in fact, are few modifications. This is easy. But,
in usual DYNAMO, objective code is assemble language, and DYNAMO
language is different from assemble language. One equation card
may be translated into many imstructions in assemble language.
As a result,.these translations are very difficult. On the other
hand, ZU-DYNAMO can be easily installed on various types of
computer, but usual DYNAMO can not. In a word, to develop a
general-DYNAMO compiler system has become a new important
research project in the fleld of System Dynamics. This paper
only deals with some aspects of problems in the development of
general DYNAMO compiler system.

Although ZU~-DYNAMO is running very well, some functions should
be extended in the future, such as the acceptance of diagram
input. We intend to provide this extension of diagram input.
Finally, we thank Mr. Weigiong Wang, Mr. Hao Chen and Mr. Baoyi
Tong helpful comménts and works in the devélopment of the system.,

REFERENCES

1. _Forrestér, Jay W. (1961) Industrial Dynamics, MIT Press.

2. Richardson, G.P, and A.,L. Pugh ITI (1981) Introduction to
System Dynamics Modeling with Dynamo, MIT Press.

3,. A.L. Pugh III (1976) Dynamo User's Manual. MIT Press.

4. Philip M. Lewis II (1978) Compiler Design Theory,
Addison-Wesley -Publishing Company.

