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Abstract

The paper starts with some reflections on the qualitative nature of the concepts involved in system dynamics modelling.
To deal rigorously with this nature topological tools are needed. These tools are being developed around the quai:tatwe
theory of nonlinear dynamical systems. The relevance of this theory to system dy ics is now begining to be underst.

The paper introduces a dynamical system associated to the causal diagram that contains only qunhunve information.
Some interesting results on the qualitative behavior of the system can be obtained from this dynamical system.

1 Introduction
In the system dynamics context the word qualitative can be used with at least two senses:

o In the first one qualitative is synonymous to pre-quantitative or poorly quantitative. In this
sense it is said that the causal or influence diagram contains only qualitative information. The
qualitative analysis of a system dynamics model can consist of the elucidation of the feedback
loops, the determination of the sign of these loops, and of the character of self-regulation or
of explosive behavior associated with them.

¢ In the.other one, the word -qualitative is used in a very formal and rigorous way, the one
proposed by the gqualitative theory of dynamical systems (Guckenheimer and Holmes 1983).
This use has deep topological and geometrical connotations (Abraham and Shaw 1987) and
is based on the concept of qualitative that has its roots in the work of Poincaré, that has
been updated by Thom (Thom 1977, 4-7) and Zeeman (Zeeman 1977, 319-329).

Wosthelholme has proposed calling the first use qualitative system dynamics (Wosthelholme 1985).
However, this denomination is restrictive if used only in this sense. It should include both meanings,
as we propose in this paper. ]

In so far as a system dynamics model is a mathematical object known as a dynamical system,
the results of the qualitative theory of dynamical systems can be applied straightforwardly to
them. This has been done in (Aracil 1981, 1984, 1986; Mosekilde, Aracil and Allen 1988), where
the relevance of these results for the system dynamics method has been emphasized. In these
references it is suggested that a generalised sensitivity analysis of system dynamics models can
be developed. This qualitative analysis, allows a better understanding of how the behavior of the
system is produced, and of how to control this behavior.

The qualitative analysis is based mainly on tools of a geometrical nature. These tools take
advantage of the graphical possibilities of computers. They help to develop a deep intuitive coni-
prehension of the mechanism underlying the behavior of the model, and, in this way, to understand
how the behavior is generated, and how to act in order to modify it.
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The actual implementation of qualitative analysis techniques is practically restricted to small
size models. However this is not a great disadvantage as in recent times greater emphasis has
been placed on small models in the system dynemics community (Forrester 1986, Morecroft 1988).
These small models show a greater transparency for the dialogue between experts 'mental model’
and ’simulation model behavior’. This dialogue can be greatly extended with the tools supplied
by the qualitative analysis techniques.

In this paper we will assume that the qualitative information about a given concrete system
comprises no numerical information beyond the signs of the influences, the relative value of these
influences and the classification of the variables in a system as levels, rates and auxiliaries. With
this information we try to get as much knowledge as possible on the behavior modes of the system,
in the concrete meaning given to behavior mode in the qualitative theory of nonlinear dynamical
systems.

Our aim-is to explore how the fmmal qualitative analysis techniques, based on the second of
the above senses of qualitative, can be used to solve the kind of questions suggested by the first of
the uses. In this way a synthesis of both senses can be reached.

The results here reported are still in a work progress stage. For instance, a computer inplemen-
tation of them is being developed. However we think that they are interesting enough to deserve
publication.

2 A simple dynamical system associated to a causal dia-
gram

Assume we have got the causal diagram of a model, and that we have classified all the variables
appearing in it as levels, rates and auxiliaries. This latter classification involves a knowledge of the
structure of the system that is rather more involved than the one in the causal diagram. However,
it is still of a qualitative (in the classical sense of this word) nature: it still does not involve any
quantitative knowledge. The aim of this paper is to state what can be said about the behavior of
the system from this knowledge.

We can associate a signed, directed graph (SDG) to a causal dxa.gra.m In this graph closed
loops can be found. Classical qualitative analysis (in the Wosthelholme sense) is mainly concerned
with this search, and goes on to elucidate the relationship between these loops and the main
characteristics of the behavior.

Once the variables of the causal diagram have been classified into levels, rates and auxiliares
we know that the mathematical form of the model takes the form:

= Ar
felz,2,p) (1)
= fz(m;P)

Where x € R™ stands for the level or state variables, » € R™ for the rate variables, z € R* for
the auxiliary variables and p € R? for the parameters. Matrix 4 is n X m, where n and m are
the number of state and rate variables respectively, with a;; = 1 if r; influences positively on u;,
a;; = —1 if it influences negatively, and a;; = 0 it there is no influence.

The functions f, (resp. f,) give the value of a rate variable r; (resp. 2;) from the value of the
state variables r, the auxiliary variables = and the parameters p that influence r; (resp. z;). In
this preliminary stage of the modelling process the concrete mathematical form of these functions
will not be known. If the modelling process has only reached the causal diagram stage we only
know if the influence exists and which is the sign of the influence. At this stage of the modelling
process we know that every variable u (rate or auxiliary) depends upon some other variables (and
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eventually parameters). This means that there is a multivariate causality acting upon u, as shown
in Fig. 1.

According to conventional system dynamics this multivariate causality can be given a separable -
multiplicative formulation. Then, it can be written:

u = f(y1, Y2501 Uk)
Un X»fl (y%l;) X fa (:Tt) X X fi (;%)

where the functions f; are the well known system dynamics multipliers (Forrester 1969, p. 22-30),
and n, Yin,... Yin stand for the normal values of variables u, yi,... yi respectively.

Yy

Y

Figure 1: The variable u depends on other variables y;

For the moment, the only assumption on functions f; is that they are monotone. This is
consistent with the fact that we can give a sign to the relation (to the arrow in the causal diagram)
that relates y; with u (Fig. 1). The general qualitative characteristics of the functions f; are:

fx(x) >0 Vaz, f‘(OO) <k, f:(l) =1,

y;et»u:if;(li—)>0 y;%u#if;(£)<0

dy" \Yin dy™ \Yin

The slope of the function fi(z) at * = z is given the name of intensity of the relation. It can
be considered as a measure of the strength of the influence relation for this value of z. It will be
assumed that the intensity of the influences of the rates on the states is + 1 or - 1.

Consider the SDG of a causal diagram. In this graph a sequence of nodes and branches (that
is, of influences) gives rise to a path. If we give a number to every node of the SDG, then the path
linking consecutive nodes i, j and k will be denoted by (zjk). The intensity of the path is defined
as the product of the intensities of the relations that form it and will be denoted by w(ijk).

A remarkable property of this definition of intensity of a path is the following. The Jacobian
matrix of dynamical system (1) can be written

J = D.f = A[D.f. + (D.f:}(D.f.)]

where J is an n x n matrix. Let B = A(D,f.) and C = A(D,f.}(D.f.), then J = B + C.

It is clear that By; = >\ Aiu( Dy fr)x;j where Ay is the intensity of the influence relation 1y — w;
and (D, f,)s; is the intensity of the influence relation #; — ri. Then the element A (D, f)x; is
the intensity of the path w; — ry — ;. Therefore B;; is the sum of the intensities of all the
paths that link the variable x; with ; through a rate variable.
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In the same way, Ci; = i Ai(D. fr)u(Def2)ij, where Ay has the same meaning as in B;
(D, f.)u is the intensity of the influence z; — 7; and (D f;);; is the intensity of z; — 2.
Therefore Aiy(D,f.)u(Dzf: )i is the intensity of the path x; — 2 — 1, — z; and C; is the
sum with respect to all k (all the rates) and all ! (all the auxiliary variables). Then Cj; is the sum
of the intensities of all the paths that link z; with z; through at least an auxiliary variable.

As far as J;; = B;; + Cy;, then J; is the sum of the intensities of all paths that link x; with v,
(through auxiliary variables or not). Therefore, the element J;; is the sum of the intensities of all
the paths that start in the level variable j and end in the ¢, and it is zero if there is no path from
i to j. According to this property the only information needed to get the Jacobian matrix of a
system dynamics model is supplied by the causal diagram and a measure of the relative intensity
of the relations in that diagram. This is a very remarkable property for qualitative analysis, as
far as the Jacobian matrix incorporates a huge amount of information on the qualitative behavior
(specially, on the stability properties) of a dynamical system. Some examples will illustrate this
fact in the next Section. .

Other related property based on the implicit function theorem (Poston and Steward 1978) is the
following. If for some values of parameter p € Q the dynamical system (1) has a single equilibrium
and the sign of det J does not change for Vp € £, then the system has a single equilibrium for
those values of p € Q.

3 Examples

To illustrate the previous results we include some examples in this Section. For notacional simplic-
ity in the figures representing the SDG all the variables will be given a number from 1 to n+m+s,
where x € R*, r € R™ and z € R°® taking the state variables for 1 to n, rates fromn+ 1 ton +m
and auxiliaries from n +m + 1 to n +m +s. A path will be denoted by (n;...n;), and its intensity
w(ny...ni). The influence relation from ng on n; will be written fu .

f A N,

r (1) (2) (3) r

pl/ C j x‘\' J 2

Figure 2: Causal diagram of system in Example 1

3.1 Example 1

Consider the causal diagram of Fig. 2. It represents a state (level) variable with two rates r; and
rq, each one affected by a parameter p; and p,, respectively. The corresponding equations are:

Tinfa(z/%0)
Tznfsl(z/:vn)

& = r—-rp= f(x,p)

i

1
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If 2, = 7in = 2 = 1 then the equilibria of the system are given by the solutions to the equation

fa(z) — fa(z) =0

According to the monotonicity property of the multipliers there is the single solution v =1 to
this equation.
The only element of the 1 x 1 Jacobian matrix of the system is:

J =w(121) + w(181) < 0
As far as J < 0 for all z then one concludes that:
o there is a single equilibrium for all p.
e this equilibrium is stable.

This is all that can be said about the qualitative nature of the long-time behavior of the model.
(4)

Z

+

f. VY- 1.

- ri(Z) jx (C) ;‘

Figure 3: Causal diagram of system in Example 2

3.2 Example 2

Consider now the causal diagram of Fig. 3. That diagram is the same as in Fig. 2, with the
addition of auxiliary variable z. The equations are:

z = zafulz/za)

n = Txnfal(fv/%vn)fsnx(z/zn)
T, = Tznle(w/i’n)fzq(z/zn)
& = ry—re=f(z,p)

As in Example 1, if the normal values are 2, = 2z, = rin =22 = 1, then the equilibria of the
system are the solutions to the equation

fla) = falw) faal far () = far(@) faa(fur(w)) =0
This equation has the solution x = 1. This is a single solution due to the properties of functions
fise
The Jacobian is

J = D,f = w(121) + w(1421) + w(131) + w(1431) < 0

Then there is a single and stable equilibrium for all values of the parameters.
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3.3 Example 3

The last case to be considered is the one in Fig. 4. The corresponding equations are:

n o= Tlnfsz(wz/lvzn)fsl(1‘1/1'1")
Tz = 7'2nf42(1:2/x2n)f41(zl/xln)
rs = T3y

Ta = Tynfer(@1/21n)

Ty = ri—Ty

Ty = r3—1y

Figure 4: Causal diagram of system in Example 3

For the normal values vy, = @3, = ri, = rq, = Tan = T4n = 1, the equilibria of the system are
given by the equations:

|
=)

faz(wz)f31($1_) - fn(l'z)fu(wl)
1 - fa(21)

It
=)

The only solution to this system is z; = z, = 1.
The Jacobian matrix of the system is:

7= [ ©(131) + w(141) w(231) + w(241)
= w(162) 0

The characteristic polynomial is ¢; = A? + a; A + ag, with a; = =Jy and a; = JygJyy. It is
easy to see that a; > 0, a; > 0, V;. Therefore there is a single equilibrium for all values of the
parameters, which, furthermore, is stable.

Supose now that the relation ©; — r; changes from negative to positive. Then, again, there
is a single equilibrium, as a; > 0; but, now a; = w(131) + w(141) has no definite sign. If
| w(131) |<] w(141) | then a; < 0 and the equilibrium is stable. This means that if loop (141)
dominates over loop (131) the equilibrium is stable. As | w(141) | decreases and | w(131) |
increases, a; decreases until it becomes negative. Then the equilibrium becomes unstable, and a
Hopf bifurcation is produced (in the generic case) giving rise to a stable limit cycle. The long time
behavior has commuted from steady to oscillatory.
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4 Conclusions

The qualitative nature of the knowledge considered and of the conclusions reached in the examples
in last section should be noticed.

The procedure proposed in this paper should lead to a test on the causal diagram (once the
variables have been classified in levels, rates and auxiliaries) to state the different behavior modes
the modeller should expect from the model. A computer inplementation of the test is in progress.
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