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Abstract

General concepts for the quantitative description of the dynamics of

social processes are introduced. They allow for embedding social science
into the conceptual framework of synergetics. Equations of motion for

the socioconfiguration are derived on the stochastic and quasideterministic
level. As an application the migration of interacting human populations

is treated. The solutions of the nonlinear migratory equations include
limit cycles and strange attractors. The emﬁiric evaluation of inter-

regional migratory dynamics is exemplified in the case of Germany.
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1. INTRODUCTION

In the last 20 years a new Tevel of understanding of complex systems
in physics, chemistry and biology has been reached. The new concepts
find their general expression in synergetics, the science of macroscopic
space-time structures of multi component systems composed of inter-

acting units.

Let us first summarize some of these central concepts: The macroscopic
space-time behaviour of multi-component systems is governed by the
- dynamics of a few order parameters only. The systematic reason for
this fact is the "slaving principle" set up by H. Haken /1/: He
could show in a rather general form that the dynamic behaviour of
the huge number of microscopic degrees of freedom is already determined
(staved) by a small number of order parameters. Therefore the micro-
variables can be eliminated, so that a self-contained dynamics of
order parameters alone arises. This dynamics is formulated in terms
of nonlinear equations of motion containing several control parameters
which may be adjusted experimentally. Such equations exhibit universal
structures which are in many respects independent of the nature
of the units composing the system.

This fact is the origin of the interdisciplinary relevance of
synergetics.

The global dynamics of order parameters described by such equations
may change and new space-time patterns may arise, if the control
parameters pass critical domains. Such changes of the global nature
of solutions are denoted as phase transitions.

Since the specific structure of the macroscopic dynamic patterns

described by the set of nonlinear equations is not predetermined
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by any specific form of boundary conditions or control-parameters,

the use of the worc¢ “"selforganization" is justified in this context.

The main objective of the present article is to show, how social

science can in principle be embedded into the conceptional framework

of

as:

synergetics (for a more comprehensive treatment see /2/).

Indeed, it is intuitively clear, that also the human society

being composed of many individuals, is a system to which synergetic

laws should apply:

a)

c)

or

The society is governed by relatively few political, economical,
cultural, religious and social order-parameters only.

The decisions and actions of the individuals are "slaved", that
means influenced, orientated, biased, even predetermined, by

the prevailing social, economic, cultural and political climate
established by the order-parameters of the social systems.

The global evolution of a society may primarily be seen as a
selfcontained dynamics of the endogenous order-parameters which
however is controlled by exogenous influences 1ike environment,
resources, economic constraints, foréign relations etc.

The internal structure of a society is only partially predetermined
by external influences and evolves in a selforganizing way. The

outcome however is not unique. Instead, different modifications

of social systems may establish under the same external circumstances.

In particular in critical situations the evolution may destabilize
so that a phase transition (revolution) into a new state and

another dynamic mode may take place.

The notions about the society mentioned so far seem to be more

less wellknown and commonplace. The main problem is however to
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cast them into a quantitative form such that the powerful methods
of mathematical analysis can be applied to sectors of the society

as well as to systems of natural science.

Let us anticipate some achievements to be provided by a quantiative

theory of social systems:

a) The connection between the microlevel of decisions and actions
of individuals and the macrolevel of equations of motion for
collective order-parameters of the society must be established.

b) The possible stationary states, evolutions and revolutions of
a society must be reflected in the global structure of the dynamics
of quantitative model systems.

c) Under sufficiently welldefined conditions the quantitatiVer models

~ should be‘amenable to comparison with concrete empirical systems

through regression analysis and forecasting.

2. GENERAL CONCEPTS OF QUANTIFICATION

Trying to achieve a quantification .of social processes we proceed
from the microlevel of individuals with their attitudes and decisions
to the macrolevel of quantitative collective variables and their
dynamics. Finally, the interdependence of micro- and macro-level

must be discussed.
2.1 The Microlevel

Aspect Space The space (:Z cbmprises all (independent) aspects ‘
which the sbcial system may provide for the individual. Examples

are: politics, religion, education, habitation, economic supply

and demand. Each aspect is considered as-a dimension of the aspect

space.



36

Attitude Vectors. The dimensions of O are furfher defined in such
a manner, that the individual can have different attitudes with
respect to each aspect. In the case of the above mentioned aspects
the attitudes are: political opinions, religious denominations,
education levels, place of residence, production activity,

consuming habits.

CIf /4 apects a =12, -- A are considered and ola
attitudes 4..,, = 1,2, --- da belong to aspect <@, the attitude’
vector £ € (X of an individual is defined by 4= {4.,',4,, LA}
The space (O can now be defined as the A4  dimensional lattice

: 4
space with [ = 7714{4 lattice points, whose coordinates are

axq

given by the attitude vectors.

Homogeneous Subpopulations. The society is composed of subpopulations p‘

A homogeneous subpopulation is defined by the (in principle verifyable)
assumption that its members exhibit the same probabilistic decision
behaviour with respect to the aspects. In»general the classes of

equal socio-economic -background are candidates for homogeneous sub-
popu]ations; It should be clear, that a fine-grained description

-of the society requires its decomposition into more subpopulations

than a coarse-grained description.

Individual Probability Transition Rates. The dynamics on the microlevel
of a society is generated, if individuals decide to change their
attitude. Such decisions can only be described in probabilitstic
manner. In this sense we introduce individual probability transition
rates:
/f)gi = probability transition rate per unit of time
for a member of subpopulation ?2x to change (2,1)

from attitude 4. to attitude ;
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Transition Rates and Utilities. Let us now ask: What is the "driving

force" for the transition of an individual between different attitudes?
It is assumed that there exists a measure 'LZ‘;‘ and '22‘2 of the subjective
“utility" to a member of subpopulation ,p* of the "old" attitude «

and the "new" attitude 4 , respectively. The individual compares

both utilities and for increasing difference (’IZ;‘ —'IZ‘f )

the transition rate in population 'p,‘ from ¢ to 3 will .more

and more prevail over the reverse rate from 4 to < . Since 1);

must be a positive definite quantity by definition, its most plausible
form in terms of the utilities of the old and new attitude is

3

— >« -~
Pje = v exp {Uf -ut} 2 (2,2)
Arguing reversely, the formula (2,2) can be subject to empirical

verification leading to the determination of the utilities, if the

transition rates 'P;“ are known (see section 3.4).

Summarizing we may say that the individual attitude vectors are
the microvariables and that the individual probability transition

rates describe the microdynamics of the system.

2.2 The Macrolevel

The microvariables and microdynamics now give rise in a natural

way to macrovariables and macrodynamic concepts:

The Socioconfiguration. Let 4’Z°§ members of subpopulation /p,(

take the attitude 3 = iiu ";z, --m } Then -the socioconfiguration
1 P P « " P} (2,3)
/,@':' g%*“"'nu Nymee M) ene M oeen )y PR >

characterizes in a given moment the distribution of attitudes within

the total population of the society. In general it can be assumed
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-3 - N
that 42. > 1 5 and 7, can be treated as a quasi-
continuous variable. The socioconfiguration is considered as a central

(multicomponent) macrovariable of the society.

The Material Situation. Whereas the socioconfiguration gquantifies

the distribution of abstract attitudes in the society, it is also
necessary {and is conventionally done in economics) to describe
the material situation within the society. This is accomplished

by introducing the situation vector

(2,4)

? = Y YD

consisting of quantified measures and indicators ’é/., of material
variables. The ’%.. include prizes, capital, commodity stock, inventory,

investment and production-rates, housing, infrastructure, etc.

The Configurational Probability Transition Rate. If one individual

of p« changes its attitude from < to 3 it induces a change

of the socioconfiguration
1 « « P
No= § MM 3
p
= W= | G () o
Since each of the ’}215 members of p‘ with attitude < can make

this transition to &1 statistically independently, the configurational

probability transition rate from 72 to "I(_L?; is given by

« — d oL o
W (R ln) = Wi () = %P
£ (5 — (2)6)
= N Y expi ‘Zl.j' -ui}
whereas all transition rates from 7 to "l@/-_# ’VL?; vanish:
(2,7)

Win'tn) =0 fr 2+ %}
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2.3 Equations of Motion

We shall now see that the introduction of configurational probability
transition rates leads in a natural way to equations of motion for

the socioconfiguration.

Becau§e of the probabilistic ﬁescription of the microprocesses
we must expect, that the exact description of the dynamics of the
socioconfiguration can only be a probabilistic one, too. For this
purpose we introduce the probability distribution over socioconfigura-
tions:

F>Cf$) t) = probability, that the socioconfiguration
(2,8)
N exists at time t

~

This probability is normalized according to
> Pty =1 (2,9)
»n

Master Equation. The probability distribution obeys a fundamental
equation, the master equation which derives from a dynamic probability
balance consideration:
-‘%@—w = éi{wﬁi-m:‘,-)P(zz;,t) — Wi (n) Pm.t)}(z-’m)
ci%o .
The meaning of (2,10) is intuitively clear: The change with time
of the probability of configuration %2 is due to two counteractive
terms on the r.h.s. of (2,10): The first term describes the probability
flow per unit of time from all neighbouring configurations into
the configuration %2 3 and the last term (with negative sign) sub-
tracts the probability flow from ?31 into all neighbouring configura-

tions.
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The solution of (2,10) not only yields the evolution of the most
probable configurations but also the width and form of the probabilistic
fluctuations around them. For most applications in social science it
contains too much information, thch cannot be compared with the poor
empirical data. Therefore it is often sufficient to go over to equa-

tions for the meanvalues ﬁiﬁ (f) of the variables 42?

Meanvalue Equations. The meanvalues of 77? are defined by

™

nE (t) = Z n& Pln,t) (2,11)

In a straightforward manner there can be derived exact equations

of motion for the meanvalues from the master equation (2,10) (see /2/):

d n#(t) <
R Wy vy — Wi (¢ 2,12
oAt ;iZ*:)% ! y )} e

These equations are not yet selfcontained, since the calculation
of the right hand side requires the knowledge of the probability
distribution FD(tf,t;) For sharply peaked unimodal distributions,

however, it is justified to assume

ok K, - (2,13)
g (m) Az Wy (%))
so that the equations (2,12) take the approximate but selfcontained
form:
%.l: y § W () - Wi (7 )} (2,14)
§+0

Equtions for Material Variables. In order to complete the dynamic

description of the society on the macrolevel, it is necessary to
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set up equations of motion for the material situation vector
too. We shall not go in details here, but make a remark which seems

essential to the structure of the theory:

Conventional macro-economic mode]é start from phenomenological
equations for the macrovariables. This procedure, however, disguises

the relation between the micro- and macro-economic level.

An alternative way of finding equations for material variables
is. suggested by our conceptual framework: The evolution of all material
variab1e§ - investment, production,prizes.énd consumption of commodities
etc. - is without exception tied to the decisions and actions of
subgfoups of the population - managers, producers, merchants, consumers
etc. - who may be partners or opponents. Therefore the dynamics
of material vqriab]és can be traced back to the attitudes (including
modes of action) and transitions between attitudes of members of
subpopulations. Simultaneously this way of setting up macro-economic

equations provides the 1ink to micro-economics!

2.4 The Interdependence of Micro- and Macro-Level

At é first glance it mfght seem that the microlevel (individual
attitudes, actions and decisions) determines the dynamics of the
macrovariables, whereas no feedback takes place from macro- to
microlevel. This is however not the case! Instead there exists

a cyclic coupling between both levels: The individual activities
merge 1nto the collective state and dynamics of the society, and,
. vice versa, the létter leads to partial adjustment of individual
behaviour, so that micro-behaviour and macro-dynamics are coupled

selfconsistently.
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Formally, the dependence on the macrostate of individual decisions
is expressed by the fact, that the utility 2% of attitude <
to a member of population 32‘ in general dependé on the existing

macrostate:

L%
Ut = Ut (n,y) (2:15)
Hence, also the individual probability transition rates become a

function of the macrostate

'Pét (#,%) = Vexpfuiy)-Uf (1,9} (2,16)

As a consequence the meanvalue equations (2,14) become nonlinear
equations. The same holds in general for equations of the material

situation.

The nonlinearity of the constitutive equations reflects the complexity
of social processes. The "slaving principle" mentioned above 15
implied by eq. (2,16), since this equation directly ties the micro-
decisions to the macrostate, that means to the order parameters.
The nonlinear dynamics now leadsi- depending on initial conditions
and on exogeneous control parameters - in general to a complex variety

of possibilities for selforganizing dynamic patterns within a society.

3. AN EXAMPLE: THE MIGRATION OF HUMAN POPULATIONS

Migration of human populations is an appropriate example of dynamic

social processes because of the following reasons:

é) Each individual takes a welldefined decision in a given interval
of time either to stay or to change the area of its residence.

b) The interaction of popu]étions on various psychological, social
and economic levels leads to nontrivial mgiratory effects, for

instance homogeneous intermixture of populations, ghetto formation,
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growth of metropoles etc.
c) The theory is amenable to comparison with the empiric situation,

because migration data are available in many countries.

3.1 The General Migratory System

The system of - P subpopulations o = 4,2, ---- P migrating between /
areas < =1, 2, --- L is easily seen to be an application of

the general concepts developed above, if the following identifications

are made:
a) attitude <« = "to live in region <
b) utility "LZ"f = "measure of attractivity of region <

to a member of subpopulation pa(
¢) individual probability transition rate p;ﬁ = Y op {12"‘--12"‘?}
2 probability per unit of time of a member of
population ')0,‘ to move from 4 to ? .
d) socioconfiguration 4R = { N%}

2 regional population distribution, such that

n& members of subpopulation ’po‘ live in region <.

A simple but nontrivial form of the utilities is found by consider-
ing them as functions of the socioconfiguration (2ee (2,15)), which

may be expanded in a Taylor series up to first order:
o “ L5 S R4 8 |
Ut (n) = I+ 2 X my , (3,1)
=1 = .

Here we consider the case, that the attractivity of region /L only
depends on the population in that region. That means, eq. (3,1)
is simplified to

p
W (ny = i + L?_ x“Fnf 62

KN
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According to their meaning, the 55‘ are denoted as preference
parameters, and the ){“F as agglomeration parameters. After
inserting (3,2) into (2,2) and (2,6) one obtains the explicit form

of the master equation (2,10) and the meanvalue equations (2,14).

In particular, the meanvalue equations now assume the form

o g 2 -y MaZE
T = D v g epl (o) + TR CR- )]
4 (%)

- o 3,3
- 3 rateplapany Ty O

)

In the next sections we shall discuss the results obtained for

special cases.

3.2 Two Populations Migrating Between Two Areas

One of the simplest cases is that of two interacting populations ’g«, pv-
migrating between two areas (for instance within a city). The socio-
configuration is 1 = { #{ v M, w3, Since the total

population numbers of lpf and 'py are constant,
mEt =M ; MTEmd = 2An (3,4)

there exist only two dynamic variables

xz’i’lg-;nwf‘ R

"» » (3,5)
y = "?.«.2—_’7?; . -1 < 'J < +1

n

and the transition rates (2,2) may be cast into the form
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7044( = Y@xpfﬂﬁ/‘(x,y)]
i = rexpl-par ]

. (3,6)
P =y expl A €”(x,47]
Py = Y expl-Au” (xy)]
with |
A’lif‘lx,g) = XM+ REX + 6l
(3,7)

4w (xy) =T + R™Y +6"X

where )2/‘) )2* describes the internal aggiomeration trend within

populations p/., }?T y respectively, and 6/“, 6"‘ the "sympathy"
trends to live together with the other population.

Three qualitatively different classes of migratory dynamics can
now be described within the model by different choices of the trend
parameters ){/“) )QY) 6/‘1 g, (For simplicity we only consider
cases with TA =Y = O .) Characteristic cases of each class
are depicted in figures la,b to 3a,b. The figures a) show the fluxlines
and figures b) the stationary probability distributions belonging
to the same trendparameters. For illustrative purposes small numbers
m o= = 20 have been chosen in figures b), leading to a

considerable width of the distribution.

Case 1, with moderate values of agglomeration trends )@’4, x>
and sympathy trends 6/, 6  Tleads to one stable fixed point,
the homogeneous population mixture (see figures la,b).

Case 2, with high vames of agglomeration trends }{/‘, » Y and

positive sympathy trends leads to two stable fixed points in the
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first and third quadrant describing that both popula'tions tend to agglomerate

in the same region (see figures 2a,b). For negative sign of &/« and
G“’F that is for "mutual aversion", the fixed points would be in

the second and fouth quadrant. This case describes ghetto formation,

that means separate agglomeration of each of the populations in a separate

area.

Case 3- 1ith high values of agglomeration trends X Y; R/ and
asymmetric sympathy trends 6*= - 6/ lead to solutions of
the meanvalue equations approaching a 1imit cycle and to a quadrumodal

stationary probability distribution (see figures 3a,b).

An interpretation o»f this restless migration process can be given
as follows: Let us start from an initial state with both populations 'p/‘
and py 1iving in region .1. Because of 6/ = — G 7 = 'f, 0, ’p/‘
tends to live together with W», whereas /p., tends to evade '}Q/M
Therefore ?Qv- emigrates from region 1, settlingin region 2. There-
upon /p/‘ follows py- y settling in region2, too, and so on.
In our simple model this process of ?2/‘ chasing '}?,p is continuing
forever. More realistically the process describes the sequential erosion
of suburbsof some big cities by migration of asymmetrically interacting

populations of different social standards or different races.

3.3 Three Populations Migrating Between Three Areas

Everyday experience with politics teaches that chaos is a constitutive

part of social processes. It must therefore be expected that the equations
of motion for social dynamics also reflect this fact. We shall now demonstate
that already the migratory meanvalue equations with constant trend parameters
comprise cases of deterministic chaos, as soon as the number of independent
dynamicivariables exceeds the minimal value 3 (for a more explicit dis-

cussion of the following results see /3/).
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The analysis starts from eq. (3,3) speicalized to three populations
pd , o = 4,2,3 migrating between three regions € = 1,2,3 Because

of the constraints

3
ol
> mt = N° = const - (3,8)
<=1
six of the nine variables 'ﬂ? (t) are independent, so that strange

attractors could exist.

A numerical analysis with a set of‘representative values of the agglomera-

tion matrix R“F yields the following results:

Chaotic trajectories appear, if

a) the intra-group agglomeration trends » - are positive above
a critical value

b) the sign of inter-group sympathy trends )-?.O(F ; X = ﬂ between
at least two groups is asymmetric,

c) the interaction matrix ){“F is unsymmetm'c.oa/ V2 4«‘:34«—«‘»-&
Only fixed points or limit cycles appear on the other hand for a

fully antisymmetric agg]dmeration matrix }{"‘ﬂ

The route to chaos is now demonstrated in figures 4a,b until 8a,b ; for

which the concrete agglomeration matrix

14 4.5 =15
»()&‘_‘(*)= -1.5 14 1.5 - (3.9)

has been chosen, where the parameter R’  traverses the values
Here:Figures 1.5, — 0.5, — 0,55, -15.

4a,b - 8a,b The figures 4a until 8a represent for different values of X

the projections of the asymptotic trajectories (attractors) into the
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n, / 41f -plane, and figures 4b until 8b exhibit the corresponding
Fourier spectra of n [ ), (f)].

Figure 4a,b and 5a,b show two limit cycles (with corresponding Fourier
spectra) belonging to the same value R*? =46, Both limit cycles
merge into one for X" =-0.¢, as shown in figure 6a,b. Period doubling
(or better period multiplying) of the limit cycle appears in figure
7a,b after the value of the trend parameter has slightly been shifted
to R® = - 0,55, Finally the limit cycle has evolved into
a strange attractor with continuous Fourier spectrum for the value

NP = ~4.5, as shown in figure 8a,b.

The structure of the strange attractor can be further investigated
by making a Poincaré map of the trajectory: The hyperplane szZ = 1/3
is chosen and all points § %% = 7, u, ... 2} 3
where the strahge attractor pierces tihis hyperplance are registered.
The projections of these points into the planes

(i n2), (ni,nd), (ny,ml) (%, al)
are depicted in figure 9. They indicate, that the trajectory of the
strange attractor lies almost on a two-djmensional surface. Indeed,

' » 4{%/,2 _

a detailed investigation shows, that theélcorrelation dimension of this

strange attractor is Q= 2.14 /3/.

3.4 One Population in L Areas: Empiric Evaluation

Whereas the preceding sections focussed ontheoretical investigations
demonstrating how the model description comprises various migratory

phenomena, we shall now. turn to concrete applications /4/.

In federally organized countries with, say, /.  states or regions

usually the following data for interregional migration are available

year by year:
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hegion Population | Number of transitions per year from i to j
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In the migratory model there correspond the configurational transition

rates
W) = Vi () exp (U ()= Ueld)) My (¢)

to the empirical transition matrix elements wﬁ- (t) listed
above. Formula (3,10) is a.generalization of (2,6) including not only

[
regional utilities WU (t) but also a mobility factor

Vi (t) = Yy (8) = ¥ (t) e
where Y, .(£) is a global timedependent mobility and D‘-‘- = Dji
and effective distance between regions 4 and J' .

The utilities and mobilities in formula (3,10) now have to be chosen
in a manner that leads to optimal agreement between ’L()’ﬁ" (?) and
the empiric waf ‘(t), A standard procedure for optimal fitting is
the least square method: The W, () and Vi (t)  are determined
by the requirement, that

A - , ,
STS [wi) - wi ]t = e
=1

qic=1

(3,10)

(3,11)

(3,12)
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Figure 10 shows as a result of this regression analysis the timedependc :u

" “regional utilities" of the 11 states of the Federal Republic of Germany
ere: '

Figure 10 ' ; : i iTiti
In the further analysis one tries to represent the regional utilities

w: (t) in terms of the: population numbers M (¢t) and further socio-

economic key-factors. The following form can be substantiated:

We (1) = R0 (8)— 6Enlt) + d0(t) (3,13)

In this formula the dependence of Q. (t) on the size of the region
is taken into account by the agglomération term - X% (t) and the
saturation term — & % (£)  whereas the "preference” J¢ (¢)

is a measure of the size-independent attractivity of the region. The

preference can be fitted byappropriately selected socio-economic key-factors

..O.hf U‘) as follows

3. (1) = Z"a* Q7 () (3,14)

Figure 11 depicts the preferences that means the size-independent part
of the regional utilities. The final figure 12 shows, how all utilities
found in fig. 10 can simultaneously be fitted by using six regional
socio-economic variables only: The population number 4¢. (t) and

its square Mr (£)  (see (3,13)), while - § ¢ ()  is fitted
according to {3,14) by four key-factors: number of overnight accommoda-
tions, export index, rate of unemployment and rate of employment in
service sector.

Here:

Figs.11+12 The attempt to represent the regional utilities in terms of socio-economic

key factors is of course not made for its own sake but for deeper reasons:
In complex selforganizing systems like the society it is difficult to

find cause-effect relations in a direct manner. Therefore the fact that
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the total space-time-dependence of ‘utilities can be represented as linear
combination of a few selected socio-economic factors only i$ taken
as an indirect indicator of their causative nature for the migratory

dynamics.
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Fluxlines of meanvalues for agglomeration trends

RFA=R¥= 0.2 and sympathy trends &/ =6"= 04

Stationary solution of the master equation for

i =4 = 20 and trend parameters as in fig. la.

Fluxlines of meanvalues for agglomeration trends

RA=R*= 0.5 and sympathy trends 6 /4= 6v=41.0

Stationary solution of the master equation for

-—

=4 = 20 and trend parameters as in fig. 2a.

Fluxlines of meanvalues for agglomeration trends

Ri= R =1.2 and asymmetric sympathy trends
6/ =-6"=10.

Stationary solution of the master equation for

i =M =2( and trend parameters as in fig. 3a.
The ('n,“) nt) projection of a first limit cycle
and the Fourier spectrum of £ [ 17 (£)7]
for X7 = 1.5

The (!, %,*) projection of a second limit cycle

and the Fourier spectrum of 2 ): n) (f)]
for X% = 1%

The (%4, W}) projection of one Timit cycle
1

with the Fourier spectrum of £u L %5 (£)7]

for R®=-0,8%




Figure 7a and b

Figure 8a and b

Figure 9

Figure 10

Figure 11

Figure 12
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The (m,’, »,') projection of a limit cycle

_with period multiplicity and the Fourier spectrum

of L L 2% ()] for R =-0.55

The (7. ,M2) projection of a strange attractor
with continuous Fourier spectrum of /eu [7"-; (f)]
for XB = —-1.5,

Projection of the traversing points of the phase
trajectory of a strange attractor ( X7} = _1,5')
through the hyperplane n’ = "/3

onto different planes.

Regional utilities 2Z. (#) for the 11 countries
of the Federal Republic of Germany. Notations:

+ Schleswig-Holstein, o Hamburg, A Niedersachsen,
D Bremen, <& Nordrhein-Westfalen, e Hessen,
* Rheinland-Pfalz, x Baden-Wiirttemberg, = Bayern,

> Saarland, < Westberlin.

Regional preferences Bé (i‘) for the 11 countries
of the Federal Republic of Germany.

Notations as in figure 10.

Representation of regional utilities by socio-economic

variables. Symbo'ls: regional utilities from migratory

data as in figure 10.

Straight lines: Representation of utilities according
A 2

to (3,13) and (3,14) using M. (¢), M: (£)

and four key-factors
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