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ABSTRACT. In this paper we construct a method for solving
the problem of optimizing the maximal deviation of the real
plan (or the trajectory, the technological process...) from
some ideal one. The mathematical model of the dynamical
system being considered is a system of linear differential
equations with a control function. The method is based on
some ideas of the so-called support method proposed by R.
Gabasov and F.M. Kirillova. '

After introducing support controls and establishing
their relation with controllability of the system, we de-
rive a criterion (which can be easily verified) for a sup-
port control to be optimal. Then we briefly describe an
iteration for improving the existing control if it has not
been optimal yet. Finally we present an illustrative
example.

I.PROBLEM STATEMENT

Many situations arising from economic¢ and technical
practice can be formulated in the form of the following
problem: Minimize the functional

L(y,u(.))=1 = max$|a'x(t)-x(t)| , t€ T= [0,t ], (1)

‘with respect to the control (y,u(.)) and the phase trajec-
tory x(.) which satisfy the constraints:

x(t)= A(E)x(t)+b(t)u(t)+c(t), te 1 (2)
x(0)= x,* 6y, 3, <7<y (3)
w<u(t)<u’, te Ty Hx(t" )= h. (&)

Here x(t) is the state of the dynamical system (2),x(t)
€ R®, A(%) is an (mxn)-matrix, b(t)e R, c(t)e R®, u(t) is
the scalar control function, t& T, y is the control para-
meter, yé Rr, G is an (nxr)-matrix, H is an (mxn)-matrix,
rank H= m£n, X € R%, d¢ R", heR™, a'b(t)£ 0, t€T, the

symbol ' denotes transposition of vector or matrix, all
the vectors are column vectonrs.

For example if xi(t) is the quantity of the i-th type
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product, i= I,2,...,n, y is the control of the store at the
initial time moment, u(t) is the control of the technologi-
cal process, ¢{t) is the wear and tear, x(t) is the given

in advance ideal plan of production at time moment t. Then
L(y,u(.)) will be the maximal deviation from the given plan
which we seek to minimize.

The problem (I)-(4), as we can see from the minimax and
the absolute-value function in (I), is non-smooth and clo-
sely related to optimal control problems with state const-
raints. It is known that such class of problems is especi-
ally complicated to solve numerically and in recent years
considerable efforts have been made to construct efficient
methods and algorithms. In (Chan I986; I989) we investiga-
ted some simplified versions of the problem with «/(t)=o,
A(t)= A, b(t)= b, c(t)= 0, G=0. Moreover, the results gi-
ven in those papers were based on a strong non-singularity
property of so-called support controls. In the present pa-
per we shall consider another non-singularity property
which seems to be the most natural one for the problem .
This essential improvement became possible thanks to a new
approach to prove the optimality criterion with using ano-
ther type of control variations and applying the implicit
function theorem. We exploit here mainly the ideas of Ga-
basov - Kirillova's support method which has been success-
fully used to solve a wide class of optimization problems
(Gabasov and Kirillova I980; I984). -

The plan of the paper is as follows. In Section 2 we
introduce a support, a support control, and show the rela-
tion between existence of support and controllability, in
a certain sense, of the system. An optimality criterion
for a support control will be established in Section 3.
Section 4 is devoted to description of a scheme for nume-
rical solution of the problem. Finally, in Section 5 we
present an illustrative example. .

2.SUPPORT AND CONTROLLABILITY

In the following an admissible control is any pair (y,
u(.)) where y is an r-vector, u(.) is piece-wise continu-
ous function, which satisfy all the cogstgaints (2)-(4).
We says that the admissible control (y ,u"(.)) is optimal
iff L(y%,u°(.)) £ L(y,u(.)) for every admissible control

(youted).
"Let (y,u(.)) be an admissible control and the maximum A

(see(I)) be attained on the set T of segments or isolated
. . omX xi_ i ~ oL .
points: ’.[‘s— i Ts = [Wi,fl]CT, "ié ( <‘vi+1 ’ 161} where
I is a finite index set. Moreover, denote Lf{ié&l: nin
xi)_ * ¢, R * xi X _
30(t), teriH=0f, I:{:.e I: mm{w (t), te™¥= of, 7% =
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{m’“, ie If i ém’;i, i€ I § w(t)=w () for tems*, -

a)(t) for témx where (t) d'x(t) o(t)+ A (the lower dev:.-
ation), a)(t) ?\-d'x(t)+ o((t), t €T (the upper deviation).

Definition 2.1 (support controllabllity) The deviation
w(.) is said to be controllable on T provided that for
any pn.ece-w:.se-smooth function z(.)= (z(t) te'l‘x) there lS
such variation Ay, Au(t), té T and 4A that

a'Ax(t)y+ g M=2(t), t€T5 (5

HAx(t" ) = 0 , | | (6)
where gl—ilf iel , -11if 1€I, ,

gggg__ A ;?Ax(t)-f— b(t)du(t), t€T, (7')

On TXl equation (5) lS equlvalent to the follow1ng con-
dltlons

a'dx( Tt giAZ =2(%), | | | j(8)
dAx(t) = 2(8). | (9)
Combining (9) with (7), we obtain '
Au(t) = [2(t)-a'A(4)Ax(5)]/a b(E), (10)
Ax(t) = A (6)Ax(6) + b (£)2(t) - (II)
where A (t) [E-b(t)a'/d'b(£)]A(t), bSt)= b(t)/d'b(t), t €
T’; , E is the 1dent:.ty diagonal matrix.

Denote by F(t,T), t€¢ T, the solution of the matrix dif-
ferential equation

ar(t,7)/dv = -F(t,'v)As(b),z“em’s‘ LT <ty

F(t,t)=E, ~
and put F(t,7)=0 for ¢>t. Using the Cauchy formula for a
solution x(.) of the differential equation (7) (for t € -
Ti) and (¢II)(for té‘l‘g),' we rewrite (8) and (6) into the
form

.d'F(ti;o)GAy + f d'F(’Ui,t)b(t)Au(t)dt-i- ?iA" =

X
Tn
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§lz(eg) + (¥hyraety+ j he. (T)2z(?)ar, (12)
HE(t" ,0)Gdy + 5 HF(t" ,6)b(t)Au(t)dt = Fcz(t'l) +
T
Pal) + | b (@)a(rrar (13)
Tx

. : ) s v
where all the vectors z('UI) = (z(’C’i),.Y. . ,z(’Um »N, z(’c,I): '

1 ' '
(z2(T7)yeee,z(T II,))' (the symbol |Ilstands for the number
i i

,K]m )', the matrices Fc and Fc, and the functions
hi.i(’l}'),’d’eT}S‘, i€ I; hc(’é”),’()’éT;I can be computed from the

data of the problem. _
Thus we obtain a system of [I|+m linear algebraic equa-

tions with respect to unknowns Ay, du(t), t¢& T§ and 44 .

Controllability of the deviation «X.) on T: means that

the system (I2)-(I3) is solvable for every value of the
right~-hand side. We are going now to establish a construc-—
tive condition for solvability of the system. To this end
we define the (|I|+m)xr matrix

os
P°- P~
poc
where ~
08 _ (d'F(bi,O)
i1€TI
08 : ‘ o
(Pk ) be the k~th column of P, k€ K:{i,...,rf.
Py «
Theorem 2.I. For controllability of the deviation aX.)
on Tg it is necessary and sufficient that there exist

such columns pz, keKSC K, and points tjé Ti, J€dJ, that

one of two the following cases takes place:
a) (simple case): [K [+[J|=[I/+m and det Py#0 where
the matrix

G\ o
) » P°°z HF(t",0)G and let pQ=
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d'F(ti,tj)b(tj), J€d
i I P
¥
BF(t,tj)b(tj)

v
f
U;UO

os
oc
P3
b) (main case): ]KS[-f-IJf:[I[-i-m-i and det Py # O where
the matrix :

d'F(’L’i,tj)b(tj), Jed Si
| 161

HF(t*,tj)b(tj) | 0
(Here one of the sets Ky and J may be empty).

To prove Theorem 2.I one has to note that if, for exam-
ple, the case a) is realized, then there exists such a

neighbourhood N:i of the point t., j€J, that det PS £ 0

. J
where the matrix p

d'F(7;,5)0(t), Jed
5 N;j N
P= | Pg ) i€l
T s X |
) ERGE",6)bp(t)at
Nj :

Moreover, if ak(.), k€ K, are continuous linearly inde-
pendent in T functions, then there exist such ]Kl points
t.¢ T, jeK, that the matrix (a,(t.)), ; is non-singular.

J k*377k, g

In the main case, considering Au(t) = const in a small
interval t[j] of tj, jed, and then taking the limits as

the length of the intervals converges to O, formally we
come to the following formula which plays an important
part in the rest of the paper:

M =85 Ay + J; A ($)lu(t)as + J;c A, (6)z(8)at +
. v T

n S (I"l')

2 [ag)+staeh ]
iel
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where dy, Ayy, 4,(t), tetd, A (v), ve¥, &, 6%, 161,

can be computed from the data of the problem, qi, is the

last line of the matrix QS:Péi .

u . w_u Xl

Furthermore, denote 'r,'sz{bj, JéJ}, T =Tg UTS, T =
u _SmX ml /7o
m\o? TS.{TS,TSi o= opUeg.

Defini;cci?n 2.2. We say that the set_{KS,'l‘Sg is a support,
the set T is a dynamical support, the set {KS’TSE‘ is a
working support of the problem iff det PS#: 0.

Definition 2.3. The pair {y,u(.);KS,TS§ where (y,u(.))
is an admissible control and {K ,Tsf is a support, is_.cal-
led a support control. We say tHat®a support control {y,
ul.); KS,‘}.‘Sgis optimal,if the control (y,u(.)) is optimal,
and non-singular,if it possesses two the following proper-

i) Tup < T < ¥y » K€Ky u*<u(t)<u » $ETS

. : g y
@ (t)>0, t ¢ 1%, s 0 (£)>0, t £ 15 5

ii) every ta.e'v‘; is either a continuity point of
the control function u{(.) and then u < u(’cj)<u* or
a discontinuity point of u{.).

We are ready now to establish the following

3.OPTIMALITY CRITERION
Theorem 3.I1. The main case and the following relations
are necessary and sufficient for optimality of a non-sin-
gular support control {y,u(.)-,KS,Ts}:
20y Jp= Tyx o
¥ .
Opc ) <0s Ty= ¥y (15)

: »*
=0, .yk*< yk< Ty kéKN 3




Page 104 System Dynamics '91

>0, u(t)= u* y

4 n(®) 40, u(t)= u* , (I6)
=0, g < u(t) < u*, teTn ,
A(6)$20 W (8)=0s 4 4 am
=0, w(t)>0, ;o,w(t)>o, |
sen¥, | ters®, |
{2 0, W (%)= 0, | %>o w, (FH)=o0,
. 0,(,(3(_ (¢)>0, 0" (=0, @ (t*)>0,
i€ I, |
i (18)
{40 @ (T :)=0, izo W (et)=o0,
=0, &(T)>0, =0, @ *etyso,
161

The proof of Theorem 3.1 is not simple and needs more
than one page. To prove the necessity one has to consider
control variations of the followa.ng type:

g, tEN(E, )
X signé, te{ta,ta+ Sa,% » JET 0L <

) minfu(t)- L, 0 -u(s), t’e[tj-e,tj%}f,]aj(@)
Au(t)=
d-ult .+ Lené. . bESb. b + E0,GET ¢
[a(t;)-u(t; oiJs:Lgna‘.J » BEft gty t 60, 0e s
O otherwise, témﬁ > '

where t* is a point of Tﬁ where the relations (I5)-(I8)

do not hold, N(t,) is a small neighbourhood of t,, J, is
the set of continuity points of u(.), J;= J\J,, e is a

given positive number, and to apply the implicit function
theorem to the following ( |I/+m)-dimensional vector-func-
tion

£' (8345, k€ Ky 53,36.3‘,A7\) = (Pg Aygdt +




System Dynamics '91

Page 105

(9 J a'F(T;,t)b(t)as + 2 f a'B(T; ,b).
(&) JET, §tyby+esf
Wb(t)at Xy signéy + 7 a'P(7; ,5)b(t)ds.

JET §ry ¢
: ¥
[t )-u(t;+ 0)]signsey + g An, 11, (6 j HE(t ,t).
| N(t, )
. X .
Db(t)at + 2 5 f A'R(E,5)b(5)dt «ysigne;
i . .+ &,
363, 5055t &1
. o ar(E",e)n(E)at [ult ) -uls + 0)] sien
3€d {ta?ta+7aaf |
83.)' . Note that the sufficiency remains valid for any
(not necessarily non-singular) support control. '

4 ,CONTROL IMPROVEMENT - . = _ SR
Assume that the support control {y,u(‘. );KS,T.S } being

considered does not satisfy the optimality criterion yet.
We are going now to describe briefly an iteration of the
procedure of improving the support control. '

Using the formula %IQ-), we seek to minimize AA subject
to the constraints ‘

(705 3, -y¢ Ay <" -y, Ay € R BOx(t") = 0;
u*-u(t‘)éAu(t)éyu*-u(t‘), tET. |
Mo this end we take positive parameters C:n' (:s,é , U/
and define sets ~
85,= {te ™ {An(t)l>Cn§-,‘ S;';:{t eT¥ : A(£)> €s§ .
| s;:{*ce * . As(t)<-CS}-, Ny =[%, ¢t 1), N =

i i : i

D)

Put o X .
Ay = %(yxkfyk) 12 &> 0y = 6 (3 -vy) 1F Gy

<0, = 0if &y=0, k €Ky ; (20)
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Mu(t)= -6,[u(t) + sign 4 (6)], tes,,0<0,41; (21)
a'4x(8) +AA=-6ey (+), te Sy \ Nps (22)
1 %* - .

a'4x(t)-A2=0,w(t), €8 \Ny, 0<6;¢1 . (23)
Furthermore, assume that N.,c S';. Here are three possibi-
lities: - ,

I) N‘-fi A4(6)@, (6)at > maxf, 6,4 (%)F ¢ In this case

1

we introduce the condition (22) for Niqs

2) Jiag‘_(’c’i)? niax%(j, Nf As(t)cgf(t)dt}: Introduce
' S '

a new‘condition:‘ d'Ax(@i)+AA=;%@(@i),, 0« 54.4 1; |
3)C > max%Sia_;(‘Ui), N‘S;_ As(t).a’i(’c)d'tf: We take out
i

the interval Nil from the set Nl. .
Analogously we consider every interval Nil’ Ni, ieI.

?he)resulting ‘system of conditions will be numbered by
24). : o . , ‘

The problem (I)-(4) formulated in terms of variations
Ay, Au(t), t& T,AA, with the additional constraints (20)

-(24) is called a continuous support problem. Dividing
,-'x + - . . -
the set T\(bu U 84 st U Nl) into intervals T(r)’ [t(r)’

t(r)], t(r)-t(r) < 1, and putting Au(t‘)‘-—‘/ Vr, EE€T oy

r€ R, we arrive at a discrete support problem in the spa-
ce of Ayg=(Ayy,keKg), V., T€R, A, G »+++s By which

may be solved by the method of (Gabasov-Kirillova I980).
Thus transition to a new (improved) support control is
completed.

5.EXAMPLE

To illustrate the method described in Secs. 2-4 we ta
ke the following example: Minimize the functional ‘

L(y,u.))= max$|E(t)|, t€T=[~454]
subject to the constraints
X ()- x(8) = u(%), teT; x(0)=x(0)=0, x(0)= ¥y,
123425 |u(t)[24, te T, (e+d)x(4)- (é=DX (1) =e-1 .
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Note that x(0)=y>4. Therefore we have always L(y,u(.))
24 . Moreover we shall consider only odd control functions
u(t) = =u(-t), -1<t<0.

We begin at the initial control y =1, u(.)=0. For this

%ontfo%/we have x(t)= [éxp(t)i—exp(—t)]/a Hence L(Z;0) =
etid/e)/2.
The computations of Secs. 2-4 lead to the optimal cont-

rol y%=4, u(%)= -1, o<t<1 uo(t),-i, -{<<0 with
L(y°,u°C. ))--- N
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