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ABSTRACT -

This report describes an object-oriented approach to model representation. An object's
behaviour is defined by sets of rules. The system provides control of the model's dynamic
behaviour by providing simulation monitoring facilities. The main performance assessment is
based on a heuristic analysis of simulation data which creates a specification of refinements to
the model in order to better satisfy. the predefined goals. The simulation life cycle is managed
by means of a goal—dlrected rule system which examines the performance of a scenario.

Based on the performance assessment, resources are reallocated by means of a backtrackmg
strategy where the key features are the use of heunstlc and domain-dependent search
algorithms, and the concept of parallehsm is used in the structunng of the optlmal strategy.

INTRODUCTION

To find the optimal course of action is in many real world problems a difficult task, even
when the target system does not seem extraordinarily complex. The difficulty is further
increased when a decision maker has to make choices between several conflicting objectives,
the system has many decision and output variables, and the structure of the system is not well
known. In this situation an optimal decision is one that somehow establishes the best mix of
outcomes. In some cases a lowest acceptable level is defined for the quality of a solution.
Everything better than this minimum is acceptable Optlmahty is rcplaced by "good enough"
(or’ acceptab111ty") : ;
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A system contends with its environment to achieve its objectives. A problem solver must
decide which operations to perform to achieve a given goal. Another difficulty arises from
that a decision maker does not act 1n an 1solated world. He must consider the nsks of the
alternauve decisions.

The determination of the optimal policy usually requires that the optimum decision must be
specified for the known time span. One realistic view is to consider this period to be divided
into several time segments or stages during which a particular policy is followed. The
solution can then be thought of as a plan where actions follow each other. One well known
example is resource allocation in production scheduling. The importance of scheduling and
operational control of production processes evolves from the need to realize a given task in an
optimal way. Actually, the theory of scheduling as an area of operation research is well
known but still many problems arise in practical implementation. The schedule generation
does not allow for a simple solution. That is, there is no efficient algorithm for solving the
general resource-constrained scheduling problem, and there is no hope that such an algorithm
will ever be developed due to the high computational complexity of the problems. Therefore,
the solutions are often obtained by means of heunstlc methods and sub- optlmal solutlons are
cons1dered as sufficient. o

The planning domain can be classified in terms of 1) size, 2) complexity, and 3) structure.
Size of the planning problem refers to the number of elements that must be considered.
Complexity relates to the number of interrelationships between elements. Structuredness
means the degree of uncertainty about the precise nature of the relationships between
elements. Resource allocation problems tend to be, in any reasonable abstraction, NP- hard.
This implies that these problem types are probably inherently intractable in a well defined
sense (Garey and Johnson 1979). By a more classical classification allocation problems are
semi- or unstructured. Semi- and unstructured problems, however, do not usually fit a
standard problem solving mold, and are generally solved by examining different scenarios,
and asking 'what if’ type of questions (Simon 1960). Examples of the structural complexities
are multiple feedback loops in continuous systems described by differential equations.
Predictability of the behaviour of the system is extremely poor if the time dependency of the
system components is non-linear. , :

In this paper we describe a solution based on simulation of the resource allocation problem. It
is known that a simulation approach to resource allocation perfectly fits the framework of
discrete-event simulation (Baker 1974). The interest of this study is to find means for solving
reasonably complex, i.e., too complex for analytical solution but not for simulation, resource
allocation problems. This kind of system has inputs and outputs which are connected to each
other by a dynamic behaviour. Another objective is to improve the efficiency and
effectiveness of extracting information from simulation models. One of the main advantages
of simulation is its ability to experiment with a simulated environment. The end-user is
engaged in a process of "what if" analysis based on the simulation model. The result of this
process is either the design parameters or the modifications of the systems being simulated.
Both the process of selecting design parameters and the process of making recommendations
for modifying a system based on a simulation model can be very lengthy-and may involve
many simulation runs.



System Dynamics '91 ' Page 257

Combining artificial intelligence concepts with traditional simulation methodologies yields a
powerful design support tool known as knowledge based simulation. This approach turns a
descriptive simulation tool into a prescriptive tool which orders goals according to prcdeﬁned
criteria (Reddy 1987, 162-166) . :

DOMAIN CHARACTERISTICS |

In this section the characteristics of the resource allocation domain is defined and the generic
problem is shown which is solvable by the method described in this paper. The allocation is
considered to be a process which is controllable to the predefined state or states during the
plan using predefined policy functions. These policy functions are constrained like control
variables in control engineering problems. The system consist of an object process, a
disturbance process and a regulator process. The disturbance process describes the
environment with which the system interacts. The object process represents operation and
dynamics of the system. The regulator process represents decision making system which
selects from among all possible system behaviour the action it considers potem;lally most
effective.

The resource allocation process described above differs from the common scheduling
problems in some aspects. For instance in manufacturing scheduling problems the resource
allocation does not affect the dynamics of the other tasks which are coming later into the
production. Only the overall dynamics of the system is affected. In this system the scheduling
of activities interacts with the dynamics of the process. This is due to the time varying
dynamics of the scheduled processes.

OPTIMALITY OF THE RESULT

For the complex problems typical of systems and policy analysis, true optimization is a myth
(Miser and Quade 1988). If there were no other reason, the gaps that are always present
between the real-world problem situation and the formulated problem and the models chosen
to represent it preclude any true optlrmzatlon of the real- world situation.

There is often more than one possible solution. This means that an a’cceptable rather than an
optimal solution is usually the "right" answer. The optimality of the solution may be
measured in different ‘ways. For instance the final state, speed of transition from initial state
to final state, cost of transition, and value of the predefined performance index are usually
included in quality measures.

The quality of the plan is not only the quality of the final state but it is a function of the
system's state vector and the value of descriptive parameters integrated over the planning
horizon. In the context of the plan of actions which constitute the optimal policy, actions must
satisfy predefined constraints during the evolvement of the action chain. This kind of
acceptable solution has a trajectory behaviour. This behaviour may be reduced to a figure of
merit via numerical or statistical techniques. Also the structural behaviour of the system has
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its own value when the structure is only partially known beforehand or the structure fluctuates
during the analysis process. In a structural simulation, the structural behaviour of a system is
generated to deplct a time-indexed sequence of structures of the system (Oren and Zelgler
1987, 131- 134) :

In order for an optlrmzatlon a.naly51s to be fea51ble there must ex1st a prescnptlve -
mathematical model that will permit an optimal alternative to be derived, either by a
mathematical algorithm or by a controlled trial-and-error procedure. Simulation is a trial-and-
error procedure where true optimization is not possible. Therefore simulation is considered to
be a black box experiment where the structure and causal relations of the system cannot be
utilized in optimization. In the planning context the black box view has its limitations. ‘
Therefore we introduce an interactive optimization approach where the solution is controlled
by setting initial parameters and adjusting solutions. Jones (Anthonisse et. al. 1988, 413- 419)
introduces the term grey box for this type of optimization; the traditional single black box is-
replaced by a network of black boxes with user intervention required whenever one of them
completes execution. In this way, the human planner gurdes the computer towards prormsmg
parts of the solutlon space.

RELATED WORK

There is no standard analytic strategy for solving resource allocation problems. Operations
research uses a wide variety of approaches, each adapted to the problem situation being dealt
with. The classic analytic strategy is to use a modelling approach that replicates the essential
features of the problem situation as closely as possible. This heritage from operations research
work served well in early systems analyses in which the structures were perceived as clear
and the complexities and uncertainties modest (Miser and Quade 1988). The traditional
operations research techniques for scheduling applications are simulation, network methods,
combinatorial procedures, and heuristic approaches (Eilon 1979). The-choice of technique.
usually depends on the problem complexity, the type of the model, the choice of objective,
and other factors (such as wether several alternative solutions are required).

Network methods are mapphcable to dynarmc scheduhng because the precedence network is
constantly changing. Combinatorial procedures (i.e. the use of blind search) can be ruled out,
because of the complexity of the problem. The only remaining traditional computer-based
techniques that are applicable are simulation techniques and heuristic approaches. However,
simulations have to be interpreted by skilled scientists before a naive user can readily
understand them. The ‘cycle time' for simulation (from user's query to answer) is likely to be
too long. Existing heuristic- -scheduling programs have limited intelligence, because of the '
very simple knowledge representation used (Eilon 1979).

On the other hand the achieving the optimal course of actions has the same characteristics as
the planning problem known in the artificial intelligence community. In planning a planner
tries to construct a course of action to achieve a set of goals. A problem of reasoning about
actions (Simon 1966) is given in terms of an initial situation, a terminal situation, a set of
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feasible actions, and a set of constraints that restrict the applicability of actions. The task of
the problem solver is to find the best sequence of permissible actions that can transform the
initial situation into the terminal situation. .

Although significant advanced were made during the 1970s, the rate of progress has levelled
off over the last decade, and major technical obstacles remain (Fiksel and Hayes-Roth 1989).
The knowledge required for solving realistic planning problems has great temporal and
conceptual complexity, as well as inherent instability and uncertainty. Consequently, existing
algorithms for plan construction and optimization have had only limited success, even in
relatively narrow problem areas (F1kse1 and Hayes-Roth 1989, 16-23). A number of problems
in current planning techniques have been identified in (Doran 1984). However, current. Al -
planning research is just: begmmng to tackle the problem in temporal and resource-restncted
domains (Bell et. al. 1987). : . : :

For solving resource allocation problem of the type described above we have to resort to
simulation with domain dependent knowledge functions and approximation algorithms, that
deliver acceptable solutions within an acceptable amount of time. It is just one step further to
embed such-algorithms in a heuristic setting. The solution is found by means of a directed
trial-and-error procedure, in which man and machine divide tasks in accordance with their
respecmve capabilities. - :

FRAMEWORK OF THE SOLUTION

The problem solving method presented here is focused on representation of the two different
modeling aspects: 1) the modeling (representation) of the physical system, and 2) the
modeling of the problem solving 1tself i.e., the model of the problem solving strategy and
tactics. : Ty

The basic modeling of the resource allocation problem is based on the combined discrete-
continuous simulation pradigm. Differentiation into one of the two classes is based on the
way the descriptive variables of the system change, e.g., how the system advances with time.
Continuous dynamics is modelled by continuous-change models, which can be described by
ordinary or partial differential equations, and the resources are modelled by sequencing time
events. The system is partially structured using parallel processes. A parallel process is
defined in a conventional way as the collection of all concurrent independent sequences of
system states and events. The applicability of these prarallel processes is discussed more
thoroughly below. : :

The physical system is modeled using an object-oriented approach. In an object oriented
simulation model each object has a state (some sort of structured content), behaviour (a set of
methods that operate on its state) and communication capabilities with other objects (sends
and receives messages). :

The problem solving strategy is divided into three hieraréhiéal layers: 1) simulation and
generation of the plan network, 2) analysis of the constructed network, and 3) design of the
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next simulation if the constraint satisfaction of the network cannot be found so that the
acceptability criteria is satisfied. These steps generate a partially hlerarchlcal plan wh1ch is -
revised according to the acceptability criteria of the plan.

Simulation is a good alternative when the system dynamics is poorly known. The problems
encountered in' Al planning can be avoided in simulation, e.g., temporal complexity in
‘'simulations is dealt with: using a monotonically increasing system clock. Structural
complexity which is the main difficulty in turning the simulation from a descriptive tool to a
prescriptive tool is maintained both in the goal seeking capabilities of the parallel processes
and the analysis and the possible relaxation of the generated project network. The project
network is used only in acceptability analysis and for guiding the next simulation towards a
satisficing solution. The concept of parallel processes is important when the processes is -
guided towards the subgoals independently. This strategy for seeking optimality is similar to
the grey box 1dea presented above.

The network ana1y51s (output analysis) is based on the backtracking strategy The foundations
of this strategy are in state space representation. The result of both resource allocation
processes can be described as a state transition diagram, with transitions corresponding to
activities. The diagram represents a sequence of states (or activities) from a given start state
to a certain goal state. A simulation model may also be described as a state transition
diagram, again with activities corresponding to states. In a simulation, however, there is a
transition back from the goal state to the start state (Lee and Miller 1986, 15- 25) o) that the
processing of the model can be backtracked through repeated iterations.

STRUCTURE OF THE KNOWLEDGE BASED SIMULATOR

The simulator design presented here is based on the knowledge based (intelligent) simulation
paradigm. The coordination of symbolic reasoning and numeric computation is a difficult
task in intelligent simulation. It has been realized that if applied separately, neither symbolic
reasoning nor numeric computing can successfully address all problems. Therefore complex:
problems cannot be solved by purely symbolic or numeric techniques and coordination
between them is needed (Kitzmiller and Kowalik 1987, 85-90). We are implementing a
knowledge based methodology in our simulator two ways: 1) Embedding an expert systems
within a simulation to improve the behaviour of the objects. Another possibility is to increase
capabilities of the simulator with symbolic reasoning, e.g., the next event scheduling in the
simulator is important for the optimality criteria selected, and 2) using expert systems
methodology for post simulation analysis. In our case the post simulation expert system is
used for network analysis.

The aim of the first approach is to insert look-ahead schemes into the simulation for minimize
the trial and error procedures (search) in the simulation study. This is comparable to some
extent with conditional events in traditional simulation (Kreutzer 1986). Implementation of
this strategy plan of action is developed in a fragmentary manner during the simulation run
adding actions into the plan. A complete plan is synthesized in this strategy as opportunities
arise. This kind of opportunistic systems is constructed using a "black board" architecture
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(Hayes-Roth 1985, 251-321) in which multiple knowledge sources and intelligent objects
contribute to the development of alternative plans. The knowledge functions are used in this
"intelligent simulation" phase in a strictly monotonic manner. This approach is a good
alternative when the inference engine does not support temporal reasoning or it is not possible
to use the truth maintenance schemes known in the more sophisticated systems.

The second stage in the ana1y31s is more fundamental for sunulatlon stud1es In this model the
expert system is a tool that helps the user with the analysis of a finished simulation model or
the development of a model which converges towards.an acceptable solution. In output
analysis the expert system backtracks to the simulation time point where the deviation does
not yet violate the acceptable solution. This kind of analysis adds a strategic component to the
problem solving. - e

We are using a micro computer as a platform for the simulator and therefore it is realistic to
base the development of the "intelligent simulator” on the upgrading of an existing one. The
structure of the simulator is object oriented running in the Smalltalk programming
environment. The base structure is presented in (Goldberg and Robson 1983). In the object
oriented simulation the world view is process oriented. Parallel processes are implemented:
through processes in a Smalltalk programming environment (Goldberg and Robson 1983).
Process orientedness provides locality of object: each process routine.in'a model specification
describes the action sequence of a particular model object or objects. This kind of world view
is well suited for the optimality strategy we are implementing because the system's object
class descriptions specify how to deal with objects in their class definitions. The knowledge
based components are easily embedded in this class hierarchy.

The primary difference between discrete event simulation models developed in the Al
environment and models developed in conventional programming environments is the ability
to use a rule system to model decision making (Egdorf and Roberts 1988). This leads to a
more comprehensive view of an activity in the simulation produced in the Al environment. In
conventional environment, emphasis is placed on modeling the exercise of physical
capabilities. This leads to a model of sequences of activities as a sequence of events: begln
activity - end act1v1ty -

With the ability to model the exercise of cognitive cabability, each activity is modeled in our
simulator as the event sequence presented in (Egdorf and Roberts 1988):

- Begin Cognitive activity to determine next action.

- End Cognitive activity. :

- Begin Physical activity

- End Physical activity.

- Begin assessment activity to determine result of physical activity.
- End assessment activity. :

The new sub-activities that represent the cognitive and assessment portions allow modeling of
command and control systems, and allow a model to be built that performs analysis of the
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decision making process itself, rather than Just performance ana1y31s of a physrcal system
(Eodorf and Roberts 1988) . r

CONCLUSIONS

Object oriented programming is a powerful tool for the design of intelligent simulation. This
approach allows for the inclusion of knowledge based methods into the simulation in ways
that are not easﬂy realizable using classical techniques. In this paper the structure of the -
intelligent simulator is presented. The project is in the development stage of the simulator.
Next step in this development phase is to increase the system's knowledge based capabilities.
Because the intelligence is a goal-directed and adaptive knowledge processing ability. Two
important extensions will be explored: Adding knowledge-based intelligence which has an -
ability to perform simulation studies defined several scenarios within which they can simulate
a system to increase their knowledge about: 1) behaviour of the model or 2) sensmvny of the
behaviour of a model to parameters or operatmg condmons '

REFERENCES

Anthomsse J.M., Lenstra, J. K Savelsbergh, M W P. Behmd the Screen: DSS from an OR
Point of View. Decision Support Systems. 4(1988): 413-419. ,

Baker, K.R. 1974. Introduction to § equencing and Scheduling. New York: John Wiley and
Sons. ,

Bell, C., Currie, K., Tate, A. 1987. Tlme Wmdow and Resource. Usage in O-Plan. AIAI-TR-
32, Umversny of Edlnburgh

Doran J. 1984. Planning systems and expert systems. Planning session report, Alvey IKBS
research theme: IKBS Workshop number 1. Abingdon, 5 - 6 May.

Egdorf H W., Roberts, D.J. 1988. Discrete event simulation in the artificial mtellzgence
envzronment In Ai papers by the Soc1ety for Computer Simulation International.

Eilon, S. 1979. Production Schedulmg In OR'78 (K.B. Haley, Ed) Amsterdam Noth-
Holland.

Fiksel, J., Hayes-Roth, F. Knowledge Systems for Planning Support. IEEE Expert.
Fall(1989): 16-23.

Garey, M.R., Johnson, D.S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. San Francisco: Freeman.

“Goldberg, A., Robson, D. 1983. Smalltalk 80: The language and its implementation.
Reading: Addison Wesley.




System Dynamics ‘91 Page 263

Hayes-Roth, B. A Blackboard Architeéture for Control. Ariiﬁcial Intelligence. 26(1985):
251- 321. _

Kitzmiller, C.T., Kowalic, J.S. Coupling Symbolic and Numerical Computing in Knowledge-
* Based Systems. Al Magasine, Summer(1987): 85-90.

Kreutzer, W. 1986. System simulation progfamming styles and languages. Reading: Addison
Wesley. "

Lvee,,R.M., Miller, L.W. A Logic Programming Framework for Planning and Simulation.
Decision Support Systems. 2(1986): 15-25. o

Miser, H.J., Quade, E.S. 1988. Analytic Strategies and Their Components. In Handbook of
Systems Analysis: Craft Issues and Procedural Choices (Miser and Quade eds.). United
States: Elsevier Publishing Co., Inc.

Reddy, R. 1987. Epistemology of knowledge based simulation. Simulation. 48(4): 162-166.
-Simon, H.A. 1960. The New Science ofMdﬁagement Deci’s‘ion. New York: Harper and Row.

Simon, H.A. 1966. On reasoning about actions. CIT #81. Carnegie Institute of Technology

Oren, T.L, Zeigler, B.Z. Artificial intelligence in modelling and simulation: Directions to
explore. Simulation, 48(4): 131-134. . ~ '






