SYSTEM DYNAMICS SIMULATION
LANGUAGE——— DYNAMOC

Han Jiugiang, Sun Guoji, Wu Biao

Institute of Systems Engineering
Xi’an Jiaotong University
Xi'an, P.R. of China

Abstract

This paper introduces a system dynamics simulation language———DYNAMOC
developed by authers. In the paper, we first focus on discussing the program
structure, software functions and features . Secondly, a simulation example is
provided to illustrate our DYNAMOC.

Introduction

Since system dynamics was found by Prof.J.W. Forrester in 1956 at MIT, it has
been extensively used for the study on society, economics, population and
environment system etc.. At the same time, system dynamics simulation language
was also developed as a supporting software. MICRO-DYNAMO is an earliest
SD(system dynamics) simulation language that can be run on microcomputer
IBM—PC.”XT.Although- it has played an important role in the research and
application for SD method,there also exists some disadvantages, such as, limited
model size,sigle integration rule,Jow compiling and running speed and lack of
interactive capacity etc.. In recent years, because of popularization for
microcomputer and enhancement of its performance, developing SD simulation
language with high performance will certainly promote the study and application
of this technique.In order to overcome all those shortcomings in MICRO-
DYNAMO, and meet the needs of simulating many large—scale systems in society
economics, we have developed the SD simulation software DYNAMOC successfully.
DYNAMOC’s performance is superior to MICRO—-DYNAMO in many aspects, such
as.fast compiling and running speed,friendly interactive,various integration
methods and larger model size etc.. Since 1983,DYNAMOC has been extensively
used in over sixty universities and scientific research organizations in our
country. Many users think DYNAMOC to be a typical SD simulation software on
microcomputer IBM—PC./XT,AT and compatible computer, in china.

Functions and Features

1. Model Size

In DYNAMOC, SD model size is only limited by memory space in computer
because of using dynamic memory allocation technology. DYNAMOC can simulate
SD model with 500 equations on computer IBM—PC./XT with 312kb memory space.
And when computer’s memory spaces increase by 6ikb each time, the model size
to be simulated can increase by 400 — 500 equations.

2. Integration Method

DYNAMOG provides three kinds of integration rules included Euler, fourth order
Runge—Kutta and changable step. These integration methods can entirely meet
the needs of different simulation accuracy and speed.

Page 264

System Dynamics '91 Page 265

3. Equation and Function

DYNAMOC can solve all kinds of equations and functions Stipu'lated in standard
DYNAMO language.In addition, the independent variable of table function may be
both equal and unequal interval, and it provides relative table functions too.

4. Operation Sign

Standard DYNAMO language only provides arithmetic operation. But DYNAMOC
can solve both arithmetic and logic operation.

5. File Management

User can directly use most of commands provided by DOS(Disk Operation
System) during DYNAMOC operation, such as,edit text,print and copy file and so
on.

6.. Interactive

Because of using menu technique full and providing large scale assistance
operation informations,when user only enters a few commands, simulation process
may be completed.During simulation run, user can pause the operation of
DYNAMOC at any time,and modify parameter and display data etc.. After
simulation end,user can also modify parameter and rerun,but it is unnecessary
to recompile model.

7. Parameter Optimization

DYNAMOC provides parameter optimization function that can optimize five mode
parameters each time. After user enters the parameters to be opyimized and

objective function according to the grammmar rule of DYNAMOC ,the parameters
can be optimized immetiately.

8. Output Mode

DYNAMOC provides many kinds of output modes such as data print,screen graph
with low and medium precision,low precision graph file and plotting on SR—6602
plotter.These output functions provide great convenience to user.

9. Support Environment

DYNAMOC is programmed in C and assembler language and can run on
microcomputer IBM—PC XT,AT and compatible computer. In order to modify and
regulate source program easily and maintain the software conveniently, the
whole program consists of seven main modules.

Overall Structure

Overall structure of the software program is shown in Fig.l. The system
controller,together with file management, model compiler,parameter modifying,
result output.error diagnosis and model run module are combined into the
overall structure of the software program. We introduce the program structure
and function of every module respectively.

Page 266 System Dynamics '91

' - {system con’uroller,L
file parameter] model result error
management “modify compiler] output diagnosis
model 1
run

Fig. L DYNAMOC Oyerall vStructurek ,
1. System Controller Module :

System controller harmonizes the operation of every module in overall
structure,controls the system run and manages the operation menu of the whole
system according to user’s choice.

2. File Management Module

In DYNAMOC operation process, when user needs to operate file such as Edit,
Copy and Print and so on,they have to pause simulation operation and exit
DYNAMOC. In this way, the simulation data generated in run is easily lost, and
this type of operation is very unconvenient too. Hence, file management module
accomplishes most of functions in DOS.However,it is not a true operation system,
but only uses full various functions provided by operation system.its whole

program is written in essembler language
3. Compiler Module ’

Compiler module is a nucleus in DYNAMOC, its performance affects directly the
speed of compiling and running model. In order to enable DYNAMOC’s compiler
program to be independent of a special computer, we use a medium language
that is a executable code generated by compiling source program. The design
thought of the medium language is shown in Fig. 2. : o :

(U Source program
What is called source program means SD simulation program written by user
according to DYNAMOC’s grammar regulation. For instance,Eq(l) is a SD

simulation source program, and it is sometimes called a SD equation.
R RATEKL=AK*¥BK+CXK o

(2). Grammar analysis and pseudo—machine -code

Grammar analysis is that checks whether source program accords with grammar
regulation or not. Pseudo—machine code is a medium code generated by
analysing and treating source program. In gramgmar analysis process, compiler
dispatch program reads in a SD equation (source program) from SD simulation
model program each time, and checks its type and name. When the equation
name and its type accord with grammar regulation, dynamic memory allocation
program will build a equation tree for the equation. The structure of equation
tree uses a two—intersection tree structure that uses structure name as node.
When souce program exists grammar wrong.error diagnosis will display error
type and modifying information.After the equation name is treated, expression

System Dynamics '91 Page 267

treatment program will analyse and treat the expression at right side in the
equation.Because the expression includes either arithmetic operation or logic
operation , or both, the analysis algorithm of expression uses a operation sign
priority rule of expression—oriented. During expression treatment , contant,
variable and function are treated by a semantics analysis program. First, the
semantics .analysis program takes a operation symbol and relative operand
from the expression in order,through analysis and treatment, and yields a
operatiion instruction that is called medium (pseudo—machine) code, and,at the
same time.also builds a same ' medium code tree with equation tree structure .
So that variable check and the generation of optimization objective code can be
done in late.Next,the operands that can not temporarily become medium code are
temporarily pushed in a operand stack.After the whole equation is treated,
compiler stipatch program will treat next equation continually. In this way, until
meeting RUN equation or the source program end, grammar analysis of the

source progarm for a model will be completed and all pseudo—machine codes
generated - too. . o :

‘|source program |

[grammar analysis] -»
¢

[pseudo—machine codel

i S
[variable check| o , I+
e : . | 0
[objective code | o 1>K/ CK
. I / \
larrangement order] 0 \ :
1 ' AK B.K
lexecutable code .| .
- Fig.2. Flow chart of inedium language .~ Fig3. medium code tree

For instance,in treatment Eq(1) process, the semantics analysis program first
generates two instructions stored AK and B.K variable, and pushes the two
address pointers stored the two temporary instructions in operation stack. Next,
it generate a multiplication operation instruction. In order to generate medium
code ‘instruction for the multiplication operation, the two address pointers kept
A.K and B.K variable in operation stack are poped from the stack , and,
generates into a medium code instruction for AK%B.K . But the medium code
instruction is as temporary operation instruction in generation addition
instruction, and its address pointer will be pushed in the stack , then
generates another instruction stored C.K variable. Last,it genertes a addtion
instruction, its two operands are the address pointer in the stack and the
instruct stored C.K respectively .At this moment, the address pointer of the
addtion instruction is only pushed in the stack, and it is the root of medium

code tree built by AK¥B.k+C.k experssion. The medium code tree structure is
shown in Fig. 3. X

From Fig.3.,the mark of every variable is zero. If there is a operand in a
operation instruction, the mark of the instruction equals that the mark of the
operand adds 1. If there are two operands, and their mark is same, the mark of
the instruction is that the mark of operand adds 1, else its mark takes.a
bigger mark in iwo operand marks.

Page 268 | System Dynamics '91

(2> Variable check

After medium code tree for all equations are correctly generated, variable
check starts. As mentioned above, because DYNAMOC’s grammar stipulate that
undefined variable can be first used, it is nesessary to check whether all
variables at right side of a equation appear at left side of the equation or not,
and whether their subscripts accord with grammar regulation or not. In variable
check, variable check program first searches those medium code instructions
stored variables. and seeks same name equation by looking for relative
equation tree according to the variable name found already, Then will obtain the
permitable subscript of the variable by looking for variable table according to
the equation and variable type found already, and compares permitable subscript
with actual subscript, if both subscripts are same, the variable has been defined,
else will search continuosly ' o

(3 Objective code

Generation mode for objective code instruction is same with that of pseudo—
machine code instruction.As the interpreter program written in C language
executes objective code instruction, the medium code instruction passed variable
check should be transformed into objective code instruction,and in transformation
process , operands may be both immediate number, register, and addess pointer.
Because of using the generation algorithm of optimization objective code tree
and generating objective code chain by producing objective code of medium code
tree ,the operation for axb only generates a multiplication instruction, but does
not generate transmission data instruction, and the equation can be calculated as
long as objective code chain is executed in order. so that can both shorten the
length of objective code chain and enhance equation’s execution speed largely.

(1) Arrangement sequence

Because DYNAMOC provides automatic arrangement sequence function, user does
not need to consider the programming sequence for source program. In
DYNAMOC, there are four kinds of equations that need to arrange sequence.
They are R,A,N and S equation.Arrangement sequence is made by scanning
objective code equation tree.After all equation trees are scanned once, if the
equation to be arranged order can not be found in the equations of
unarrangement sequence ,this arrangement order is failure,otherwise, it is
successful. In arranement order, the arrangement sequence program arranges
same kind of equations at continuous place in sequence table, and every type of
equation has start address and number.Only after all equations are arranged
sequence successfuly , the simulation for the model can start.

4. Run Module

The program structure diagram for run module is shown in Figd.

(1 Run initiating

Run initiating program is used to set the initial value of zero for every
equation except C(Contant),B(train),SPEC and T(table) equation,and keeps the
initial values of train and SPEC variable so that are used when rerun.

(2> Equation. calculation
The calculation program for every kind of equation is almost similar. For

instance, the calculation program for R(rate) and A(assistance) equation written
in C language is as follows. :

System Dynamics '91 Page 269

run_raequtQ

{ [run initiating |
for(i=0: i<racount;i++> '
{curt__equid=*(sorted _order+rastart+i); [equation calculation |
runobj=curt_equid—>root.obj__root;
dof . | parameter optimization |
CGkruncbj—>func_name) O;
runobj=runchj—>next; [result output|
} ‘
while (runobj!=NULL); [interrupt treatment]
curt_equid—>value=reqist[16];
)
}
Fig.t. run structure diagram
Where, o
racount: the number of R and A equation
rastart: the number of the equations between the start point for
Rband A equation and the table head in calcula’uon segquence
table
sorted_order: the start address in calculation sequence table
curt_equid: address of equation tree
runobjs the address of objective code instruct
func_name: threaded code of the instruct to be executed

For L(level) equation, its calculation program is almost same too. We know that
L equation is a difference form of differential equation,and because DYNAMOC
provides many kind of integration rules,m solving process, L equation have to
have one of two forms as follows.

—

L LEVELK=LEVEL.J+DTx.... : @
or L LEVELK=LEVEL.J+ODTX.... @

In Eq(2> and Eq(3),the part behind % or in brackets is the right part of a
differential equation. Under restriction above, differential equation can be solved
by any existent integration rule. In fact, main difference between L and A or
R equation only consists in their simulation time.

(3 Parameter optimization
Parameter optimization uses DFP optimization algorithm that is sometimes called

fastest fall rule. supposing: Q(a) represents targage function, and ¢ represents
parameter to be optimized, then

-vQ=—- — W
. da. ja=ay
Where,\/Q represents Q(a)'s ladder agree when a=qa,. If h, represents search
step, the parameter a,., can be calculated by using following formula.

= — hy Q))

Where, hi represents optimization step, and it can be obtained by gold severing
method. If the optimal region of step is between A, and B,, and H, = A,B, ,

then the values on H,, and H,. point can be calculated by gold severing way as
follows.

Page 270 System Dynamics '91

H.,= 0.382%H,+A, ®
 H..= 0.618%H,+B, Q)

Source function can be overlaply calculated once by using Eq(5) and regarding
H,, and H,. as step respectively, and obtain relative objective value: D(2) and
D@). If D)D), next severing region is (A, Hy.). If DO>D), next
severing region is (H,, B,). So repeated severing, until H,< E,(smallest
severing region), optimization step will be found as Eq(®. If it is nesessary to
calculate Q- value, the whole model should be run once. '

hi= ——— (8
5. Parameter modifying module

During simulation run,not only can modify any parameter in model ‘and all
- system variables, such as constant, run time and output variable, but also
change the output mode of each output variable, but not change integration rule.
If have changed the output mode for some variables, and will output the
variables by new output mode, it is nesessary to rerun. However, rerun does
not need to compile source program because parameter modifying only changes
objective code. In this way,it enhances the speed of the whole system run
largely.

6. Output module

Output part is independent of run and compiler part, so it is very flexible.
In simulation process, because DYNAMOC does not limit the number of print
points and the number of output variables,for large—scale system, it will
generate large scale data so that there is not the space to store the data. In
order to sesclve the contradiction between large scale data saving and fast
calling in data, database is used in output module.

Example

We simulated many SD models,such as world model (WORLD DYNAMICS W5 and
W2) and the planning model for some arealover 1200 equations) and so on. For
example, we simulated the mode of researching the organisms environment
relationship between sea grass and limps in near sea.lts SD flow chart is shown
in Figh. . ‘ P

D Qe T TE ~—> -
LIP11.211.0e+003) SUEED (1.0a+0023 1., 0o +005)

Fig.t. Flow chart of SD Fig.7. simulation result

System Dynamics '91

Page 271

Its SD simulation source program is as follows:

SWEED.K=SWEED.J=DT*(SRR.JK—SCR.JK)
SWEED=100
SRR.KL=TABLE.(SRRT,SWEED.K,0,125000,25000)
SRRT=0.722000,30000.27000.~10000,”—20000
LIMP K=LIMP.J+DT*(LBR.JK—LDR.JK)
LIMP=10 SR L
LDR.KL=TABLE(LDRT,LIMP.K,0,1250,250)
LDRT=0.100."250.500.-1000.10000
SCR.KL=SCRM*SWEED.K*LIMP.K
LBR.KL=L BRM*SCRM*SWEED.K*LIMP.K
SCRM=0.001
LBRM=(.02 :

PRINT . LIMP,SWEED :
-SPEC . - DT=0.1, LENGTH=20, PRINTER=0.5

PLOT -~ LIMP,SWEED SRR

END ERRHI

O~z ar

Simulation result ploted by ploter is shown in Fig7.

Concluusion

DYNAMOC is a SD simulation language suitable for microcomputer, and it has
~been extensively used in practical system. Many users think that DYNAMOC’s.
performence is superior to MIGRO-DYNAMO in many aspects. Iis extension will
certainly promote the study and application of system dynamics simulation

technique in many fields.

' _ Refference ,'

L Jw. Fdrrester, Principles of Systems Dynafnics, MIT. Press,986. ;
User Guide and Reference Manual for Micro—-DYNAMO System Dynamics

B

Modelling Language, IBM—PC Version,by Addisson Weslay Publishing

Company Inc,1983.

]

. J.J.UHRAN, JR. AND W.I. DAVISSON: The Structure of NDTRAN——— A System

- Simulation. Language, IEEE. TRANSACTIONS ON SYSTEM VOL SMC-14 NO.6

1984,

W=

. J.B.PHILLIPS,M.F.BURKE AND G.S WILSON. Threaded Code for Laboratory

Computers, SOFTWARE-PRACTICE AND EXPERIENCE, VOL., PP257—263,1978.

i

A.V.AHO AND S.C.JOHNSON: Optimal Code Generation for Expression Trees.

Journal of the Association. for Computing Machinery vol.23. NO.3 pp 488-507,

July 1976.

