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1. Introduction _

Markov and system dynamics models apparently belong to totally different fields. They differ in
the way they approach the prob!cin of systems analysis. The language and methodologeal
instruments, each of them uses while modelling, also differ. In two artic!es published more than
a decade ago, Sahin (1979a, 1979b) showed that stationary discrete-time Markov models are
algebraically equivalent to a class of system dynamics models. He also delincéted some
advantages of this equivalence. However, these articles have apparently gone unnoticed by the
mainstream system dynamicists. Wood (1983), Mosekilde aﬁd Rasmussen (1983) have also used
system dynamics to a few cases of stochastic processes. They have however not been able to

~ propose any generalized framework.

The present article reiterates the structural equivalence underlying the general Markov models and
a class of system dynamics models. Examples are drawn from continuous time Markov processes.
Both stationary and nonstationary situations are discussed. The paper begins with an introduction
to the Markov processes in order to familiarize a reader with this branch of study. The structural

_equivalence is dealt with in subsequent chapters.

2. The Markov Modelling

A Markovian view considers a system as essentially non-deterministic or stochastic. Thus it uses
the language of probability theory, a language normally used in the study of any stochastic process.
A system governed by a stochastic process is assumed to be in any one of a finite (or countably
infinite) number of states, each state representing a particular condition of the system. Let X(t)
be the state occupied by the system at time t. Then X(t) is a random variable. These random
variables are not independent since, usually, past and present states of the system influence the
future states. The dependence relations among the random variables can be specified by giving
the joint distribution function of every finite family X(t,), X(t), .., X(t,) of variables of the
process. But this would be absurdly impractical to attempt for any real world situation. At this
point we need Markov’s simplifying assumption which states that given the present state, the past
states have no influence on the future. This is the celebrated Markov property of forgetfulness (or

memoryless). In formal terms, a stochastic process is Markovian if
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P{a < x( <b| X(t)=x,- X(t)=x,} = P{as< X(t) = b} X(t=x,}

whenever t;<t<.<t <t.
Markov models can be broadly classified into four kinds depending upon whether X is discretc or
continuous and whether t is discrete or contmuou Discrete-state discrete-time models (a lso called
Markov chains) and discrete-state continuous-time models (also called Markov processes) are the

two popular kinds of Markov processes.

The possible values, X(t)’s can assume, may have either a qualitative or a quantitative meaning,
For example, while in a queuing systcni, X(t) denotes the nilirxbcr of cuStomers in the system at
time t (a quantitative expression of the condition of t‘he‘ system),. iil a machine repair system, it
denotes the physical conditions, such as operating or nonoperating, of a machine in a qualitatiVe

manner. However in every case it represents the state of the system at any point in time.

The change in a system is depicted in a Markov model by consxdermg that the condmon changes
with the passage of a suitable time step In other words the system is said to have made a transition
from the current state to one of all poss:ble states. These transitions take place accordmg to a set
of probabilities known as single step transition probablhty If the system continues to occupy the
same state then a virtual transition is said to have occurred. Transition probabilities hold the key
to the representation of dynamics of a system. Thus a continuous time Markov process is
completely described by its transition probability function p,j(t) which is the probability that the

system is in state j at time t if it was in state i at time. 0. p;(t+A¢) is then given by

py(t+AY) P{x(t+a0=j| X(0)=i}

; P{x(t+At)=j, X(t)=k| X(0)=i }

By applying Bayes theorem, one obtains

pltra) = z P{x(+at)s| X()=k, X(O)_;}P{X(t)_kl X(0)=i}
By applying Markov’s assumption of forgetfulness,

py(t+AY) > P{x+at)j| x@=k } P{x®)=k| x(0)=i}
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Thus it is the sum of the probabilities of transition from state i to j over all states i.

60 = Epo | - )

The instantaneous rate of change of state probabilities can be derived as
d & v g . .
- .t = . . \
dt J() l-1¢|(t) ij [7]

Defining &(t) as the row vector of state probabilities, these state equations can be obtained in the

following vector-matrix form :

o - e

Taking transposc of both sides and defining X(t) <I)T(t), and A = A one cbtains
X0 =  AX0® o - o (9

This is the familiar ve,qtor-matrix state differential equation of a linear system. Thus we conclude

that stationary continuous time Markov processes are representative of autonomous linear systems.

3. The Similiaritiés and Differences between Markoi’ and System Dynamics Modelling

System dynamics views systems as essentially deterministic though facﬂmes exist to capturc real
life randomness by considering random variates of desired probabxhty dcnsny functlons However,
such random variates are gcnerally used as mere noxses contammatmg the variables that are

othcr\mse gencrated determmlstlcally as functxons of other vanabies in the system.

System dynamncs normally delves deep mto the cause-effect relationships workmg among the
individual elements of a system Such a view is conspxcuously absent in Markov modclllng and

constltutes a fundamental paradngmlc difference betwcen the two approaches

Like Markov models, states constitute the most important building blocks in system dynémics
models. But they are conceptualised differently in the two approaches. In system dynamics, states
are natural accumulations in physical flows (pure levels) or in information flows (smoothed levels),

have 'physical meaning,vand are invariably specified by quantitative measures. States are not
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random variables; thus neither the language of probability theory finds a place in the usual parlance

of system dynamics, nor is it allowed that the system occupies only one state at any point in time.

The above mentioned differences notwithstanding, there are some apparent similarities between the
two methodologies. The obvious similarity is that both the methodologies are applicable to
dynamic systems. Both view a system as a collection of states. Both rest on a property of

memoryless.

We recall that the Markov property of forgetfulness makes the future value of a state of a system
dependent on its present value only, and not on the past values. The whole theory of Markov

processes is founded on this assumption. Therefore, this property is explicit in Markov models.

System dynamics, on the other hand, makes no mention of such forgetfulness property. But the
principles of system dynamics modelling rest on such assumption. Instantaneous change of state
variables (rates) depends on the present value of state variables, not on their past values. While
enunciating the principles of system (dynamics modelling), Forrester (1969) remarks " a policy
governing a rate of flow can be responsive only to the available information at the particular point
in system" . And it is imperative that the term available information implies that the magnitude
of rate variables at any point in time depends on the value of level at that moment. Forrester’s

remarks thercfbre'clcaﬂy point to the memoryless property of system dynamics models.

In this context, tWo features of system dynamics may be discussed here. They are models of (1)
pipeline (disére'tc) delays, and (2) the boxcar trains (BOXLIN and BOXCY C functions) available
in DYNAMO. Apparently, theses two features counter’thc memoryless property that we claim to
be fundamental to system dynamics models. | | '

A pipeline delay makes its output rate exactly equal to the input rate prevailing delay time
constants back. This gives an impression that the present value of the output rate does not depend
on the present state of the system, but depends on the past state. Since this past value has to be
stored in the memory, it gives a feeling as if the pipeline delay does not display the memoryless
property. We counter this argument in the followmg manner. Firstly, in its pure form, system
dynamics is supposed to model continuous-time systems only and hence should not, strlctly

speaking, admit discrete delays. Secondly, such delays are modelled in practice as n cascaded first
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order delays where n equals the delay constant divided by the solution time interval DT. Thus,
there is no necessity to store the past values of a rate variable to obtain present values of the rate
variables in pipeline delays. If however, a software allows the values of input rate variables to be
stored in memory for later use in evaluating the value of rate variables it definitely does not display
a memoryless property; but concurrently, it also violates an important principle of system

(dynamics modelling) by permitting a rate-to-rate coupling.

DYNAMO has a facility called boxcar train (BOXLIN and BOXCYC) where the contents of a
level gets tranferred to its neighbouring level after a fixed time interval. Whereas BOXLIN allows
the contents of the last level, in a chain of levels, to dissipate away, in BOXCYC the contents of
the last level get transferred to the first level. One therefore gets a _feeling that this phenomenon
violates memoryless property. A close scrutiny of the mechanism however suggests that each of
the boxcar trains have an alternating level-rate configuration with the rates dependent on the levels
from where it originates and on a time varying parameter. The parameter assumes a value 1 only
when the length of the simulation run divided by the time constant associated with each level-rate
configuration is an integer, otherwise the parameter takes a value of zero. Modelled in this manner,
there is no need to store old values of levels and so the boxcar trains can’t be said to violate the
memoryless property. We have to admit however, that both pipeline delays and boxcar trains can

be modelled expeditiously by storing old values and using them later.

In summary we may say that if system dynamics models are strictly continuous, or even mildly
discrete (meaning table function type of discontinuities in the information flow), then these models
will display a memoryless property. While modelling such discrete phenomena as pipeline delays
and boxcar trains, a model builder can take recourse to the expeditious way of storing old values
and thus memorizing. In this context we may say that capturing history does not go against the
idea of memoryless property. System dynamics models capture history by smoothing the variables,
and by disaggregating level variables in physical flows. Smoothing attempts to capture history by
weighing past information with a sequence of exponentially decreasing weight. A smoothed level
does capture complete historical information. More and more historical information however
becomes available as more and more of such smoothing variables are cascaded. As the number of
such levels equals the smoothing time-constant divided by the solution time interval, the whole
process becomes equivalent to a pipeline delay. In such a case full information on the past is

captured in the model. However the property of memorylessness is never countered.



Page 16 - System Dynamics '91

History can also be captured by disaggregating levels in physical flows. Sahin (1979a) suggests that
defining four (age groups) levels in Meadows et al.’s world model, compared to only one in

Forrester’s world model, has enabled the former to capture history better.

It is to be noted that a model builder decides the extent to which history should be captured in his
model. Having decided that, he has to fall back upon the principles of system dynamics modelling

to define the flow rates as functions of present values of levels, thus displaying a memoryless

property.

We end by saying that the founding principles of system dynamics modelling implicitly allow a
memoryless property of the model. fn order to capture complexities of real system and thus to
enhance the scope of a model, a model builder often takes the liberty of incorporating features in
his model, which are not strictly permissible by the principles of system dynamics modelling. Thus
one may use rate-to-rate couplings and may even store past values of variables for defining some

rate variables.:

Apart from this strong similarity in the property of these models, some more similarities and
difference exist between the two methodologies. System dynamics models are generally nonlinear.
Linear system dynamics models are considered simple. The converse is true for Markov models.
Most of the popular Markov models are stationary and therefore linear. Markov models with time-

varying transfer rates are also linear.

Both descrete and continuous time systems are amenable to Markov modelling, requiring either
difference equation or differential equation representation. System dynamics models, in contrast,
make a continuous time assumption always ending up with differential equation representation.
Though attempts have been made in the past to depict discrete events in system dynamics models,
representation in system dynamics models depicting discrete-time systems in the form of difference
equations are not available. Methodologically, system dynamics is not deficient at modelling
discrete-time systems but it takes a philosophic stand that changes in systems take place only
continuously. Since continuous changes are justified at higher levels of aggregation, system

dynamics models tend to be very aggregative in nature.

Earlier it was shown that stationary Markov processes are equivalent to autonomous linear systems.
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In the field of system dynamics there are instances where highly nonlinear models are linearized
(Mohapatra 1978) for the purpose of analysis and subsequent design yieldmg differential cquatxons

similar to those for the oontmuous paramctcr Markov processes.

Another common feature of both the methodologiés is the prcsencé of feedback loops. System
dynamics models build upon explicitly defined fcedback loops. In Markov models although
material feedback loops are clearly visible, the mformanon feedback i is rather less obvxous It is
only when one studies the vecter matrix dnfferentnal equatnon for the state probablhtles that the
existence of information feedback becomes evident. These feedback loops are taken for granted and

they are not mentioned explicitly.

Another commonality between the two approaches is the versatilit& of tlleir use. Markov modclling
has risen above all the competmg mcthodologles in capturing stochasticity in systcms but has
mostly confined itself to problem areas of low level of aggregatlon Systcm dynamlcs has shown
great promise in deplctmg causal relations in data—defic:lent systems but has mostly confined itself

to problems of high level of aggregation.

4. Striictufal EQulVélence between Markov and Systent Dynamics Models.
We have shown that the instantaneous rate of change of j"’vstate probability is given by

4 |
a g, = ZomN

This can be written as EE
'd:?’,-(t) = BN+ % Bi(t) A

o L0 = 8 [’Zk;?fk] + | %gi(t) A
d v - - ,

o %20 o= g}ﬂ;(t) A - gj BON | [10]

One immediately recognizes that this is a level equation with @(t) as the level variable,
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2 @,(t) Ay is the total inflow into the level and X @(t) Ay, is the total flow out of
it i

the level. The inflow increases the probability @(t) due to transitions to siste j while outflow

reduces @(1) due to transitions out of j- The transfer rates A, and Ay are the constants associated

with the input and the output rates.

One observes tlyiat»rates are linearly dependent on level variables from which they emerge. Thus

stationary continuous time Markov models are algebraically equivalent to linear system dynamics

models. In particular, the following comments can be made :

()
(i)
(i)

(iv)
™)

(vi)

- (vii)

State prohabilities are nonnegative, a property which a state variable in any realistic
system dynamics model must satisfy.

The state probabilities add up to 1. Thus they obey the principle of conservation

‘as demanded by the physical flows in system dyhémics models.

The initial state probabilities correspond to initial values of the state variables in
the equivalent system dynémics model. - .

The transfer rates constitute the parameters of the systerh dynémics model.

The outflow rates in the equivalent system dynamics model are functions of the
state variables from which they originate. Thus they constitute simple first-order
negative feedback loops. But these loops interact with each other and, in general,
éan be embédded in large positive feedback loops formed by the levels and rates
which are related according to the transfer rate matrix. However, depending on
particular situations, there may not be any positive feedback loop in a model.
Since stationary Markov models are analogous to autonomous linear system
models, closed form solutions are possible for these models. Realistic systems may
not satisfy the stationarity assumption even if Markovian assumption might hold.
In non-stationary Markov models, transfer rates are time-varying. Markov models
with time-varying transfer coefficients are still linear. Closed form solutions are
possible, though difficult. It is af-gucd in this paper that the stationarity assumption
of Markov processes is quite restrictive. If one is ready to sacrifice the closed
form solution for the sake of capturing more realism, then one may resort to the
numerical solution procedure by converting the model into an equivalent system

dynamics model.

Physical interpretation of state probabilities in system dynamics can sometimes be
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difficult. Since the state probabilities add up to unity, the individual state
probabilities can be interpreted as fractions of total number of units in the particular
physical flow system. For example, each level will represent the fraction of the
total population in each grade in a manpower flow system, or a fraction of total
number of machines in a particular category in a flow system representing machine
conditions, etc. | ‘
(vii) The transfer rates are to be interpreted as the fraction per unit time that will flow
out of the levels. For example, they will represent the fraction of population
(manpower or machine, etc.) per unit time that will get transferred to the next level.
In this context, it may be emphasized that often estimating transfer rates in the
context of a Markov model may be difficult, whereas, when converted into its SD
equivalent, their inverses are time constants, which are less difficult to estimate.
(ix) Mathematical formulation for transient solutions of Markov models tends to be
complicated. Quite often, a Markov model deemphasizes transient solution and
heavily focuses on steady state solution. A decision based on such stcady state
relationship may not be 1mplementable in real life because the transients ‘may not
be acceptable. System dynamics models, on the other hand, glvc almost equal
importance to both transient and steady state behaviours. "
(x) »‘System dynamics models are very transparent because the variables and the
parameters have real life meaning. Therefore, SD equivalents of Markov models
allow greater realism to be incorporated during the analysis by way of introduction

of various reahstnc structural and policy changes.

5. Steady State Probabilities
Steady state solution to a stationary Markov model is very easily 6omprchensible in an equivalent
system dynamics model. We know that in the steady state condition, the net ﬂow into a level must

be zero and the value of the level variables wxll become constant ThlS means that

"
(o=}

d

and  @(1)

n
=
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So, from Eqn. 10, we must have

?% B; X = %ﬁgl Mk

Using Eqn. 4, Eqn. 10 can be writien as

i}

The steady-state (or limiting) probability @, can be obtained as the following :

T L T )

6. ; Converting Markov Models into System Dynamlcs Models v

Equation (10) can be used to construct system dynamics flow dxagrams for any Markov model.
One notices in equatlon (10) that the terms A; and Ay are not to be considered in the system
dynamics \\’mgd‘el formulation implying that the virtual transition of a state into itself should be

totally disregarded during the construction of an equivalent system dynamics model.
In the following sections we shall construct the equivalent system dynamics models for the birth
and death process and its various ramifications. Both stationary and non-stationary Markov models

will be considered.

6.1 The erth and Death Process

In a birth-death process all transmons occur to thc next statc xmmedlatcly above (a ‘b:rth ) or
unmedxatzly below (a ‘death ) in the natural mteger ordermg of states. The transition dlagram for
such a process is gwen in Fig. 1. The system dynamics flow dlagmm for such a process is given

in Fig. 2. The state equations for such a birth-death process are immediately computed as follows:

Lo = BN - B
. |
59,0 = BNyt BNy - FODG ]
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In the steady state the first differentials will go to zero. Thus the steady state probabilities are

given by .
0 = B1M0 - Boror
0 = Bk v By - Bl

Simulation of the system dynamics models of birth-death processes poses a particular difficulty.
The diffulty is that one does not know in advance the numebr of states such a process will have
nor is it possible to carry out a Simulation with infinite number of states. In the following special
applications of the birth-death process, we have assumed large numebr of states in the system to

emulate the infinite state situations.

6.2  The M/M/1 Queuing System
The M/M/1 quening system (Ravindran 1986) is a special case of birth-death process where

Nj = A . forj=0,1,2..
Njp. = (T forj =1,2,3.....
Thus the steady state equations for this system are
0 = O - . ﬁo}*
0 = @A+ B - ¢j[u + )»] for j'=1,2...

These, together with the normalizing equations
=1
1

help to solve for the steady state probabilities which age iyye_l[-known‘ in queuing systems. To
overcome the problem arising out of infinite system capaclty (leading to infinite number of states),
we have taken a large value of system capacity (equal to 20) while simulafing the model. We have,
however, also experimented with other values of system capacity, i.e. 5, 10, 15. In all thcsc cases,
in effect an M/M/1/N was simulated. In each case different values of MNu were taken to sec‘its
effect on the stcady state value. The value of p in all the cases was 8 but the magmtude of A was
varied (4,8 and 12). The solution interval in each case was taken as equal to 0.01. The initial value
of states were 1,0,0,0......,0. The simulated results are given in Table 1. Table 1 also compares the
simulated values of @, with the theoretically calculated values for M/M/ 1/N using closed form

cquations available in standard literature (for example Ravindran et al. 1987).
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Table 1. : Simulation Results for M/M/1 Queuing System

A System By
Capacity Theoretical Simulated
4 5 0.51613 0.50794
10 0.50049 0.50024
15 0.50002 0.5604¢1
20 0.50000 0.56000
8 5 Zero ©0.16667
10  -do- o 0.09091
15 -do- 0.06250
20 o do- o 0.04762
12 5 -do- 004812
10 -do- 0.00585
15 -do- 0.00076 .-

20 -do- - 000010

As expected the closest match with theoretical values are acheived when the queue capacity was
20, the highest. Effect of Nu was also as per"‘ekpectation. For Mp < 1 the steady state value for
@, was less than 1 indicating a partial utilization of service. Whereas @, in steady state approabhed
zero as A approached 1 indicating increase in utilization. For Mu > 1 @, is zero in the steady
state indicating a busy queﬁe. The plot of @, average number of people in the system and average
number of people in the queue, against transition for the three values of A are given in Figures 3,
4 and 5 respectively. In Fig. 4 the value for number of persons in the system comes to a steady
state when A/p is less than 1. But in the other two cases where A/ is equal to or greater than 1
the value for number of persons in the system does not attain a steady state value indicating an ever
growing queuc. Identxcal behaviour is demonstrated in Fig. 5 where the value for number of person

in the queue is plotted All these results conform to the results available in literature on queues.

6.3  The Poisson Process
The Poisson Process is a special case of Birth-Death proccss where the death rates are all zero and
the bu'th rates )\3 j+1 are all equal to a constant value A. The transition dlagram for such a process

is glvcn in Fig. 6. The equnvalent system dynamlcs flow dlagram is ngen in Fig. 7. From the flow

dlagram the state equatlons are glVCl'l as

d .
dt <I>j(t) = (<I>j_l - <I>j) A for j = 1,2,...

DA
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Solving the first equation one obtains
@) = M

Using this solution for ®(t) in the second equation recursively, one can show that the state

probabilitics follow a Poisson distribution. The outflow from each level variable is given by

RO

YO for j = 0,1,2....

Thus R‘,Y(t) = €M and follows a negative exponentiél disﬁibution. The flow diagram looks like an
infinite-order exponential delay consisting of infinite number of cascadedb first order exponential
delays. Thus the outflow from the Rth state variable can be looked upon as the sum of K-1 number
of random variables each following a negative exponential distributfon. Therefore the outﬂbw Ry
follows an erlang distribution of order k+1. -

The steady state transition probabilities can be equal to one another :

By =0, =0, = ..
Thus if the Poisson process is finite (maximum population size N), then each of these steady state
probabilities must be equal to (N)™! since all of them sum to unity. The system dynamics model
for Poisson process was simulated with avalue of A equal to 4. DT was taken as 0.001 and number

of states were 15. The stady state proabilities are as given in Table 2.

Table 2 : Simulation Results for Poisson Process

2[0] @[1] @[2] @[3] ©[4] @S[5] ©[6] 8{7] O[8]
0.000 0.000 0.000 0.000 0.002 0.004 0.010 0.019 0.034

B[9] @[{10] @[11] @©[12] @[13] ©[14] @[15]
0.051 0.071 0.089 0.102 0.108 0.106 0.403

Theoretically steady state values for all level variables, excepting for @, are supposed to be equal
to zero. The steady state value for a few initial variables are indeed zero. But for some others the
value is close to zero but not exactly equal to it. The stead: state values for all such variables

would have been equal to zero if a large number of runs were taken.
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6.4  The Yule Process

The Yule process is a very special case of pure birth process where X541 depends on state j in the
following manner (Feller 1966)

Mg = ir j=1

State j inclicatcs the population size. Therefore, j=0 will not be a state in the Yule process and Ay,
= 0. The equivalent SD flow diagram will not contain @, or Ry, The flow dizgram is given in Fig.
8. Like the previous case, a large value of states (15) was taken. From Fig.6 it is obvious that the
fifteenth state is a trapping state and that i in the steady state probabxhty syetem m tne trapping state

is 1 and probabxhty of system in any other state is zcro

The model was simulated using a solution interval of 0.001. The initial values were taken as

1,0,0.....,0. The value of A\ was 10. The simulation results are given in Table 2. . |
Table 3 : Simulation Results for Yule Process

o[1] (2] ©[3] ©[4] @©[5] @e[6] @e(7] o[(8] o[9]

0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009

@[10] @[11]) @[12] ©[13] ©[14] ©[15]

0.009 .0.009 0.009 0.009 0.009 0.862

Th_eorétically, in the steady state, the value for all level variables excepting the trapping state
should be zero. However the simulation this is not the case. This may be attributed to the the
following factor. The change in the value of any level during a solution interval depends on
level variable itself. As the level variable approaches steady state, its value becomes almost
equal to zero. The change in its value at that point becomes so smali that it appears that the
level has reached a steady state. However, if on: takes the simulation run over a large time

period, it is certain that the value of the level variables will eventually come to zero value.

7. Fina! Remarks _

This paper shows that Markov processes are structurally equivalent to system dynamics
models. This opens up the possibility of applying system dynamics to probiems in stochastic
systems. Queueing and Reliability systems seem to be two ready candidates for such
applications. We also expect that susch equivalence will help model builders to take note and
make use of the wealth of analytical results available in the field of Markov modelling. The

authors are working in these areas and hope to bring the results to light once they are ready.
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Fig. 1. : Transition Diagram for the Birth-Death Process
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Fig. 2. : Flow Diagram for the Birth-Death Process
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Fig. 3. : Variation of Probability of the System (M/M/1 Queue) being Empty
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Fig. 4. : Variation of People in the. System
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Fig. 6. : Transition Diagram for the Poisson Process
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Fig. 8. : Flow Diagram for the Yule Process





