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ABSTRACT

Interacting populations of bacteria and phages (i.e vira) play an important role for
many biotechnological applications. The homogeneous and well-controlled bacterial
cultures used in modern cheese production, for instance, are often extremely sensitive
to attacks by phages, and considerable efforts are invested in the search for more
resistant cultures.

In order to examine dlfferent strategies in thlS search we have simulated a variety
of growth, competition and selection processes that may arise in interacting populatlons
of bacteria and phages. Our model considers a culture containing several variants of the
same bacterium, each sensitive to a specific phage. The culture grows in a chemostat
with a continuous supply of nutrients. Surplus bacteria and vira are removed through
dilution. Depending on the rate of dilution, the model exhibits periodic behavior,
quasiperiodic behavior, deterministic chaos or hyperchaos.

-~ To study phenomena related with incomplete mixing in the chemostat we have
coupled behaviors associated with different compartments. In particular, we have
investigated how the behavior changes when we introduce a diffusive coupling of a
periodic attractor to a quasiperiodic and a hyperchaotic attractor, respectively.

INTRODUCTION

The dairy industry uses acidifying bacteria in the production of, e.g., cheese and
cultured butter. The cultures applied today are quite homogeneous and for that reason
they are often very sensitive to attacks by bacteriophages (Hugenholtz 1986). One of the
purposes of the present work is to simulate different processes occurring in the
interaction between populations of bacteria and phages in a chemostat reactor and in
that way propose strategies for the development. of new bacteria cultures.

Our model considers different variants of the same bacterium, each sensitive or
resistant to particular phage populations. In a phage attack, the phage adsorbs to the
bacterial surface and attempts to transfer the viral DNA into the cell. This can lead to
i) a lytic response, in which the phage programs the bacterium to produce a number of
phages whereafter the cell is lysed, ii) a lysogenic response, in which the viral DNA is
inserted into the bacterial chromosome with the result that the bacterium becomes partly
resistant to new phage attacks, or iii) a failing response, in which the phage is destroyed
by the bacterial immune system before additional vira are produced (Schwartz 1980).
Under stress the lysogenic bacterium may either release the viral DNA or be lysed after
production of phages.

Simulations have shown a variety of mterestlng dynarmc phenomena. For different
parameter values, periodic, quasiperiodic, chaotic and even hyperchaotic solutions are
found, and in general several stationary solutions exist simultaneously. Besides, the
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model has certain symmetry properties which control the form of the solutions. We have
also coupled systems with different dynamic behaviors, associated with different rates of
dilution, through diffusion of nutrients between two compartments. = ;

To illustrate the various solutions we have used three-dimensional phase plots,
where the concentrations of three variants of bacteria are depicted against each other,
and Poincaré sections illustrating the distribution of intersection points on a two-
dimensional surface that cuts the attractor transversely. In addition, to test the model
for chaos and hyperchaos, we have made calculations of Lyapunov exponents. These
measure the average exponential rate of convergence or divergence of two nearby
trajectories in phase space. If the largest Lyapunov exponent is positive, two closeby
orbits diverge at an exponential rate, implying that two almost similar sets of initial
conditions may give very different solutions. A system with one positive Lyapunov
exponent is chaotic, and a hyperchaotic system has two positive Lyapunov exponents.

THE MODEL

We consider three variants of the same bacterium, each being sensitive to a
particular phage population and resistant to the phages that infect the other bacteria.
Other than that, the bacteria have identical properties. The delay associated with the
lytic response is accounted for, whereas the possibility of a lysogenic response is
neglected. The bacteria interact through competition for a common substrate required
for their growth. The model is deterministic. ' o

The following differential equations describe the model:
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Figur 1 Three-dlmensmnal phasc plots of the symmetrxc periodic solutions. p = 0. 0065 min™

B; and P denote the concentrations: of bacterla of variant i and of phages that infect .
bacteng Of variant Js reSpectlvely S is the concentration of substrate in the chemostat.

;. (10” 1/min) and w;; i (0.8 fori = j, else 0.005) are constants defining the adsorptlon
ahd infection processes between B; and P, k; (10000 mg/1) and v; (0. 024 min” ) are
constants of the Monod equation descnbmg the growth of the: bacterial populations in
absence of viral attacks (Monod 1949) and 7v; (0.01 mg) is the substrate consumed in
the formation of each bacterium. p is the rate at which a suspension of substrate is
supplied to the chemostat, and the contents of the chemostat are diluted. The delay
associated with lysis of infected bacteria (A, = 30 min) is simulated as a third order
delay. IB,, is the concentration of infected l’)actena of variant i at level k in the delay
chain. B, 12100) is the number of phages released in each lysis of an 1nfected cell. o
(10000 mg/l) is the concentration of the supplied substrate, and 9 ©Oa1r1 ) represents
a continuous pollution by phages from external sources.
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Figur 2 Three-dimensional phase plots of the two symmetric quasiperiodic solutions. p = 0.0055 min, .
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Figure 5 Poincaré sectlon of a chaotic attractor.

2=0.0051 mm1

DYNAMICS OF THE MODEL

Figure 6 Poincaré sectlon of the fused attractor.

p= 0004925 min’L,

- For realistic parameter values, the model exhibits a very complex dynamic
behavior. In the followmg 111ustrat10ns the rate of dilution is used as bifurcation
parameter since it is the parameter with the largest influence on the behavior (Nielsen
and Stranddorf 1991).
‘ For high values of the rate of dilution we have found only penodlc solutions. As
a consequence of the structure of the model, symmetric solutions exist simultaneously
(fig. 1). The solution chosen by the system depends on the initial conditions and the
boundaries between those initial conditions that lead to one and those that lead to the
other solution are probably fractal.
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Reduction of the rate of dilution re-
sults in an sudden appearance of quasiperio-
dic solutions on two-tori. However, the
periodic solutions remain stable which im- ]
phes the coexistence of at least four solu- |-oou:
tions - the periodic solutions and two sym- ]
metric quasiperiodic solutions (fig. 2).

' Further reduction of the rate of dilu-
tion causes a gradual deformation of the ]
two-tori which finally break up, producing |[-oeow] i
chaotic solutions (fig. 3, fig. 4 and fig. 5). A
similar route to chaos was observed in a | _
simple migration model (Sturis and Mose- | ’1” """ oo™ e Sl o
kilde 1988). Still, the solutions are symmet- | ‘
ric. As the rate of dilution continues to :
decrease, however, the symmetric chaotic Figure 9 Convergence of the five largest Lyapunov
solutions suddenly melt together. Fig. 6 exponents for »=0.0040 min™,

shows a Poincaré section of the resulting

compound attractor - this section has the form almost like a butterfly. Shortly after the
fusion, the attractor starts to "collapse". Fig. 7 and 8 show how the wings of the butterfly
one by one are folded in response to small reductions in the rate of dilution. The
Poincaré section changes type instead of a one-dimensional non-closed curve the section
covers an area. This makes it probable that the solution is hyperchaotic (Killory et al.
1987), a proposition which is verified through calculation of the five largest Lyapunov
exponents (Wolf et al. 1985). Fig. 9 shows the convergence of these exponents as the
simulation time increases. The fact that two exponents are positive indicates that the
solution is hyperchaotic.
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Figure 10 Poincaré section of the solutlon in Figure 11 Poincaré section of the: solution in
chamber A. : chamber B.
D=0.0002 min™ and p=0.0056 min™’. D=0.0002 min! and »=0.0060 min™!

DIFFUSIVELY COUPLED SYSTEMS

In practice, the chemostat may not be fully mixed. Wlth dlfferent rates of d11ut10n
in different parts of the chemostat, spatially separated attractors exist wh1ch mteract
through diffusion of substrate.

" One way to model this phenomenon is to couple two separate chemostat reactors
with different rates of dilution. The two subsystems are connected: by a substrate
permeable, membrane which serves as a substrate difference equalizer.

The differential equations for the concentrations of the bacteria, the phages and
the infected bacteria are the same as in the uncoupled system, with the exception that
we have two equations for each concentration, one for chamber A and one for chamber
B. The concentrations of substrate in the two chambers are described as:

ds 3. S,;B, v,y
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where the indices a and b refer to the chambers A and B and D measures the efficiency
of the d1ffus1on

Coupling of a periodic and a quaszpenodzc attractor. ‘

One could speculate whether the effect of such a coupling is stablhzlng or
destabilizing. Coupling of a quasiperiodic (chamber A) and a periodic solution (chamber
B) reveals a surprising result since it shows stabilizing as well as destabilizing effects.
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Figure 12 Poincaré section of the solution in cham-
ber A.
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Figure 13 Poincaré section of the solution in cha-
mber B.

D=0.002 min™! and p=0.0060 min’’.

More complex possibilities have been suggested as outcomes of the coupling of strange
attractors. It has also been suggested that these outcomes are controlled by relations
between the sum of the Lyapunov exponents for the two systems and the efﬁc1ency of
the diffusion (Pikovsky 1984; Kristensen 1990). ;

The effect of the diffusion i is rather large. Already with D=0.0002 min™! the Pomc-
aré sections show significant changes compared to the uncoupled situation.The Poincaré
section of the ‘attractor in chamber A shows a closed curve which indicates that the
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Figure 14 Poincaré section of the solution in
chamber A.

D=0.02 min'1 and »=0.0056 min’L,

solution is quasiperiodic (fig. 10). The situation in chamber B appears to be more B
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Figure 15 Poincaré section of the solution in cha-
mber B.
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Figure 18 Pomcaré section of the solutlon in Figure 19 Poincaré section of the solution in
chamber A. chamber B.

D=0.001 min"' and p=0.0046 min™. D=0.001 min"! and p=0.0060 min’L.

complex and examination of the Poincaré section (fig. 11) reveals that the solution is
neither quasiperiodic nor periodic. We may describe this solution as a disturbed periodic
solution. It would probably be more correct to describe it as a chaotic solution. It seems,
however, to be a solution which attempts to be periodic but is disturbed agam and again,
and for that reason it cannot reach the periodic attractor perfectly and gives a chaotic
impression.

When D is increased to 0.002 min” the situation changes. The solution in chamber
A is folded but apparently remains quasiperiodic (fig. 12) and also the solution in
chamber B has become quasiperiodic. (fig. 13). 'When D=0.02 min’ 1a very harmonic
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ber B has become quasiperiodic. (fig. 13). When D=0.02 min! a very harmonic picture
suddenly appears. The solution in chamber A seems very close to be periodic (fig. 14)
and in chamber B the solution is periodic (fig. 15).

Coupling of a periodic with a hyperchaotic attractor.
Coupling of a hyperchaotic (chamber A) and a periodic solution (chamber B)
apparently has only destabilizing effects.
: For low values of the diffusion constant (D=0.0002 min” ) the solution in chamber
A is probably still hyperchaotic (fig. 16) and the solution in chamber B a %aln looks like
a disturbed periodic solution (fig. 17). When D is increased to 0.001 min™ the solution
in chamber B becomes more complex. The Poincaré sections of the solutions in the two
chambers are more alike (fig. 18 and 19) and both solutions are probably hyperchaotic,
since both sections show areas of scattered dots. ,
Contrary to the couphng of a periodic and a quasiperiodic solution, a high value
of D does not result in stabilization. F1g 20 and 21 show the Poincaré sections of the
solutions for D=0.018 min™L. The sections are almost similar and they look hyperchaotic.

Unfortunately it has not yet been possible to calculate the Lyapunov exponents for the
coupled system to verify this.
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Figure 20 Poincaré section of the solution in Figure 21 Poincaré section of the solution in
chamber A. ) . chamber B. i
D=0.018 min™" and p=0.0046 min"". ‘ D=0.018 min™ and p=0.0060 min™’.
CONCILUSION

Our 51mulat10n results show that the model with only three bacterial variants exhib-
its periodic, quasiperiodic, chaotic and hyperchaotic solutions.

Hyperchaos has only been detected in a few systems (Roessler 1987; Thomsen et
al. 1991), and it is interesting to find this kind of behavior in a realistic model of a
microbiological system. One could imagine that hyperchaos is a natural
form of interaction in biological and ecological systems.

- One of the most controversial problems in this connection is related to the
question of introducing additional species. Will a multi-species system be more regular
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in its behavior than a system with only a few species? Some preliminary simulations of
ours indicate that this is in fact the case. - '

The effect of coupling can be either stabilizing and destabilizing. Surprisingly, cou-
pling of a periodic and a quasiperiodic solution has both effects. For low values of the
rate of dilution, the effect is destabilizing and for high values it is stabilizing. Coupling
of a periodic with a hyperchaotic solution apparently has only destabilizing effects. We
had expected coupling to have stabilizing effects, at least for a high diffusion constant,
~ just like a high rate of dilution results in stabilization. It would be interesting to
calculate the Lyapunov exponents of the systems and to see if the connections between
them and the diffusion constant can explain the observed results. Further investigations
should be made to study the effects of coupling. : ‘
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