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~ ABSTRACT

The feedback control concept is central to both modern control

theory and system dynamics. Several attempts have been made to

utilise modern control theory .in developing some formalised
procedures for system :dynamics  models.  Some studies on the
application of control theory to a simple production-inventory

system have been reported. These studies were able to discover

some important policy ‘decisions to improve the behaviour of the

system. This paper presents an alternative procedure based on

modal control theory for designing useful policies for the
production-inventory system. The results obtained in this study
are generally similar to . those .obtained .in. earlier studies
reported in the literature. : -

I. INTRODUCTION

System dynamics (Forrester, 1961; Forrester, 1968; Coyle, 1977)
has been used successfully to model and simulate a class of
production-inventory systems. However, the main shortcomings of
the method are due to its unstructured, trial-and-error approach
to realising acceptable policies. The number of - policy
alternatives is limited by the analyst’s own experience and
judgment, rather than by the attainment of objective criteria,

such as stability of the system. As such, design policies for
the system may vary in completeness among various analysts. It
is thus necessary to develop some formalised procedures to
design appropriate policies for the system. The feedback concept
is fundamental to both modern control theory- and system
dynamics. One is able to draw ‘a parallel between the two
(Mohapatra, 1980). By transforming the system dynamic model into
a mathematical- form - suitable for modern control theory
application, one can utilise modern control theory to develop
stable system behaviour. One study(Mohapatra and Sharma, 1985)

uses modal control theory(Porter, 1972) to highlight the
usefulness of such an approach to policy synthesis in a
production inventory system (Coyle, 1977).

This paper presents an alternative method  of synthesising
policies in the production-inventory system by using eigenvalue
assignment. The method is based on state feedback but it
utilises 'a different eigenvalue = assignment algorithm.
Furthermore, the eigenvalues are assigned simultaneously rather
than one by one as has been done in other studies. - The approach
is suitable for computer implementation. The policies obtained
by the method presented in this paper ‘are better than those
propounded in the original study(Coyle, 1977) and generally
similar to those obtained in the study mentioned above(Mohapatra
and Sharma, 1985).
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‘'I[1. EIGENVALUE ASSIGNMENT USING STATE FEEDBACK

The state feedback approach is well established and a large
number of algorithms exist for ‘the solution of this kind of
problem. Instead of using algorithms that assign eigenvalues
one at a time(as in Mohapatra and Sharma, 1985) an algorithm for
synthesis of state feedback regulators by entire eigenstructure
assignment (Porter and  D’Azzo, 1977) should be more suitable.
Because of simplicity and power of the algorithm, the full rank
eigenvalue assignment method using state feedback is usedin this
study. This method 1is also nicely suited for machine
computation. Considering a 1linear time invariant continuous
system described in state-space form as

X=AX+BU ‘ 1)
where A,B are real matrices with dimension nxn,  nxr
respectively, the equations which describe the state feedback
problem consists of equation (1) plus the relationship

U=-KX (2)
where K is the feedback gain matrix. Combining equations (1)

and (2) we obtain the resultant‘closed+loop system equation

X=[A-BK]X - : (3)
Equation (3) indicates that the eigenvalues of the closed-loop
state feedback system are the roots of

L(a,)=1a I-(A-BK) |=0 (1)

When the matrix pair (A,B) is completely controllable, it 1is
possible to assign a set of desired eigenvalues A ® for i = 1,

n to equation (4) by appropriately using a constant feedback
matrix K (Wonham, 1965). In order to synthesise the system with
real physical flow, all elements of K must be real. The problem
is to determine K such that equation (4) is satisfied for n
specified values of Ai“ The method presented here for finding K

is adapted from (Kimura, 1975). Since equation (4) is true, there
exists at least one non-zero vector w, such that ‘

(A, I-A+BK)w =0 | - (5)
Rearranging equation (5)
(A.-BK)wi=Aiwi (6)

Hence it is clear that wiis an eigenvector of the closed-loop

system matrix (A-BK) associated with the closed-loop eigenvalue.
Rewriting equation (6)
(liI—A)w1=-BKwi

or W .
i
| [AII-AIB][ K, ]=[01 (7)

The coefficient matrix in the above homogeneous equation has
rank n for. any value of Ai’ if the matrix pair (A,B) is

completely " controllable. Equation (7) is true as long as
equation (4) is true for each specified eigenvalue in the
assigned set of eigenvalues. Let the maximal set of linearly
independent solution  vectors for a given eigenvalue Ai “be
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called U(X ). The columns of U constitute a basis for the null
space of [AlI—AIB]. The solution of the homogeneous equation in

equation (7) can be found in the literature. From equation (7)
the solution of the eigenvectors can be partitioned into two
parts as

W Wl W W(Ai)

w
1 —
URD)=ly b h....n |” H(A )

1 2 3 r i

(8)

where the substitution h=Kw has been made by collectively
combining equation (8) into one equation for the set of assigned
eigenvalues Ai, i=1,...n. The relationship becomes

KIWA ) ,WA) ,...WQA )I=[H(A ), HA),... HA )1  (9)
1 2 n 1 2 n

Equation (9) by itself is overdetermined and cannot be solved
directly for K. However, 1if the Ssystem is controllable a
nonsingular nxn matrix of wj(Ai)f - can be determined by

selecting n linearly independent columns from both sides of

equation (9) and ignoring the remaining columns.  In the
selection process, one column from both sides of equation (9)
must be used for each specified eigenvalue 'Ai. lLet the n

columns selected from the left hand side be called G and the
corresponding columns from the right hand side be <called F.
Then the following equation would result

KG=F v : (10)
Therefore, the feedback gain matrix K can be solved using
K=FG ' (11)

The vectors which are arbitrarily selected to form matrix G must
meet the requirement that its inverse exists (i.e. G is
nonsingular).Also, any linear combination of columns from a
given partition of W can be used as long as the same linear
combination of H is used. A preliminary first cut screening for
linearly dependent columns can be implemented into the selection
process. This 1is done by performing the Gram Schmidt
ogthonormalisation process and checking the inner products of
W W. Each pair of vectors W and wj must satisfy the
relationship <wf wj>=61j, 811 is the Kronecker delta. The
vectors are linearly independent only if 615=1 when i = j and
81j=0 when  i#j. In the above mentioned discussion, it was
assumed that the set of desired eigenvalues to be assigned are
distinct. However, if it is desired that repeated eigenvalues
are to be assigned, then equation (6) has to be altered
'slightly. When one or- more eigenvalues is a repeated root of
the characteristic equation, a full set of n 1linearly
independent eigenvectors may or may not exist. For each
repeated eigenvalue Ai with degeneracy q,> there will be

qieigenvectofs and Jordan blocks associated with Ai. If q, is
less than the multiplicity of Ai, then generalised eigenvectors

will be réquired. A generalised eigenQector or rank k is
defined as a non zero vector satisfying
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k-1
[A—AII] xk=0 and [A—AiI] xk¢0

The entire set of generalised eigenvectors is generated by the
rule ,
=[A—7\rI]xk

=[A-AiI]xk_1

X
k-1

X
k-2

; =[A—i I]x
‘o—[A—A le

One method of finding the generalised eigenvector is by first
finding the eigenvectors and then building up a chain of
generalised eigenvectors from them. That is, first find all
solutions of the homogeneous equation

[A—A I]x =0 .

for the‘repeated eigenvalue A For each xi thus determined, we

try to construct a generallsed ‘eigenvector using

[A-A I]X1‘1_ X,

If the ‘resultant xi+1is linearly independentdrof all _vectors

found then it is a valid generalised eigenvector. If - more
generalised eigenvectors are needed we can proceed as follows:

[A-2 I]xi 2-X1+1‘

gggrggoagiéaﬂggﬂfralised eigenvectors are needed, equation (6)
[ 1—A|B][ 3*1]=w o (12)
g+l g

where wg is the first generallsed eigenvector

Equation -(12) is used in place of equation (7) when a certain
eigenvalue is repeated more times than allowed by eigenvector
considerations. Also an iterative searching: algorithm of the
form of a modified Gram-Schmidt orthonormalisation process is
used on the composite matrix [w(kl)lw(lz)l..lw(kn)] to guarantee

the selection of an independent set.

III. NON-UNIQUENESS OF GAIN MATRIX K

From equation (4), the eigenvalues of ‘@ closed-loop system with
state feedback are the roots of the characteristic polynomial
L(Ai)=I(A—BK)—AIII - (13)

The eigenvalue placement then becomes the problem of finding a
suitable feedback gain matrix K which can give specified roots
for equation (13). (Brocket, 1965) has shown that for a single-input
completely controllable system, there always exists a unique K
for each specified set of eigenvalues. However, from the design
procedures -discussed previously, many different feedback gain
matrices can be found by selecting various combinations of
eigenvectors. For completely controllable open-loop multi- -input
system, the feedback gain matrix K is not unique for each set of
specific roots of equation (13). It will be important to make
the best use of these various p0551bilities in order to
determine a gain matrix K which is easiest to realise in
practice. We can, for example, choose the one which allows us
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to ass1gn the smallest coefficients to those states which are
hardest to reconstruct or most affected by noise.

A system can be made stable by applying state feedback and
assigning a suitable set of ‘eigenvalues. The dynamic behaviour'
of a system largely depends on the position of its’ closed loop
eigenvalues. The process of locating the eigenvalues of a closed
loop system arbitrarily in the complex plane by using state
feedback is known as eigenvalue assignment. However up to this
point, what constitutes a desired set of eigenvalues is still
undefined. This depends entirely on the performance criteria of
the system such as stability,, response time, sensitivity " to
disturbances and other system dynamics related to closed loop
eigenvalue locations. Even, if these criteria are precisely
specified, there is no simple solution. to -the problem. The
control law expressed by the feedback control matrix K can be
obtained through the eigenvalue assignment method used here.
The feedback control matrix K, provides important guidelines
which are used to improve the model structure and policies of
the industrial model.

IV THE PRODUCTION-INVENTORY MODEL

The production-inventory system by (Coyle, 1977)was used by
(Mohapatra and Sharma, 1985) to illustrate the use of modal
control theory in the design of policy. This model is now taken
as another reference example to show the simplicity,
effectiveness and advantages gained in using the :eigenvalue
assignment method presented here. Comparisons are. then made
among the results obtained by (Coyle, 1977), (Mohapatra and
Sharma, 1985) and those obtained here. One further advantage of
using the production-inventory model is the 1low order which
favours hand computation in the absence of a computer program.

The company has two departments, distribution and manufacturing.
Distribution holds stock to meet sales and the stock is
replenished from manufacturing. In manufacturing, the backlog
of unfilled orders changes the production rate.” Goods are sent
to distribution after a delay The model has three state or
level variables, » -

PLA=pipeline content actual

OBL=order backlog

INV= inventory :
Two rates, factory order rate (FOR) and production start rate
(PSR} control the control the flow of material and are the
policy variables policy variables in the ‘system. Coyle’s final
model structure uses an an additional pure level variable, work
in final assembly(WIFA) as well as the policy variable, delivery
from factory(DFF). Coyle gave the follow1ng equations for the
three policy variables:

(DINV.K-—INV.K) . (PLD.K’-?L‘A;K)

FOR.KL=ASR. K+ TRIP “TARL |
PSR.KL=APL.K . e -t aa)

_ (WIFA.K-DWIFA.K) i '
DFF.KL=AOR. K+ S

The reduced basic model with delinked policy variables is. used.
as the starting point for the eigenvalue assignment process. The
information flows are taken out and and so are average sales
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rate (ASR), average order rate (AOR), average production
level(APL) and auxiliary variables like desired inventory
(DINV), required backlog (RBL) and indicated production level
(IPL). The = policy variables are now delinked and the order of
the modelreduced to three instead of the original eight. The
third- order production delay has also been assumed to be of
order one.

V  CONTROL POLICY DESIGN OF THE MODEL

Using the reduced model, the linear differential equations
containing FOR,‘PSR, PLA, OBL and;INV are:

PI,A—PSR-DFF
0 B L=FOR-PSR
INV‘DFF—SR

(15)

The above state differential equations can be obtained through
standard procedure,Mohapatral3}). By regrouping the differential
equations into vector matrix form as

X=AX+BU+ED e (16)
where k ‘
-1 0
PDEL
0 1 0
A= 0 0 o1, B=j1 - 1], E=] O
0 0 -1
1
| PDEL 0 ]
PLA ’ FOR ;
X=] OBL {, U=| and D=[SR]-
'_ INV PSR :

In the above equation, U is the vector of control variables and
D is the exogeneous variable.

The following step by step algorithm based on the theory
described above is applied here to illustrate the application of
the eigenvalue assignment = method to the reduced
production-inventory model.

Step 1: The complete controllability of the reduced system model
is checked. A general criteria used for doing this check is to
form the controllabillty matrix

P=[B|AB|A® B| . |A"'B] - an

where A and B are the system matrices. The linear system is
completely controllable if and only if the n x Tn -matrix P has
rank n(Wonham, 1965).

For comparison purposes, the same numerical values for the
eigenvalues as used- by (Mohapatra and Sharma, 1985) are assumed,
i. e s A = A A3 =2.: , E . ,
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Substituting PDEL=6 in the relationship for A we obtain

P=[B| AB|A®B]
0 1 0 ~1/6 0 1/36
=1 -1 o (s 0 0
o o o 1/6 0 -1/36
Thus P has rank of 3. Therefor"e, the system. 1s completely

controllable.

Step 2: Form the homogeneous equation

w
tn, 1-Al21 | Kwi]-[ol

To solve the homogeneous equation, we assume the dummy variables

e1, ez, e3, e4 and e5 and obtain the following equation:
~ , ‘ e -
(17642 )0 0 0 17| !
1’ e2
0 A01-1 =[0]
i e3
~-1/6 O0AODO]]e
i 4
-e-
5

Solving the above equation, the following linearly independent
eigenvectors are obtained: '

] 1 ) SN ]
)
1 0
—(-::\ A) ™
6 i K 0 i
|~ : + Ax)

However, there afe three repeated eigenvalues and the degeneracy

q, is two. Therefore. generalised eigenvectors are required.

Using equation{(13) and w, equal to the second eigenvector above

we have, e
(1/6+7ti) 0 0 0 1 1 1
e
2
0 A0 1 -1 =t 0
v 1 e
3 N
-1/6 0o A O 0 e 6A
i 4 i
: e
b 5 -

Solving for e, e, e, e, and e the corresponding eigenvector

is obtained as follows:
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1
<2

6 A
i

1-a
i

I
Step 3: Form the composite matrix for all eigenvalues Ai’? The

composite matrix for this example is

- 1 0 0 -
0 1 1
-1/12 0 1724 =[ Q ]
11/6 2 3] ]
- 11e 00 1d
Step 4 : Since there are only threeylinearly independent

eigenvectors and three assigned eigenvalues,

G=QQ and F=9.
Step 5: Solving the equation KG=F, we obtain

1 0 o

‘. -1 1176 2. 3 ; Gt
K=FG =_ 11/6 0 1 ] -2 1  .-24
2 0 24

- 2376 2 24 -
| 2376 0] 24

Check: To check that the closed loop eigenvalues of (A-BK) are

indeed the assigned eigenvalues, . A1=A2=A3=—2, we have
-4 0 -24
(A-BK)=| 0 -2 0

1/5‘ O 0

which gives eigenvalue of -5 with multiplicity of 3 as assigned.
Now we can write the equation for the control vector U as

follows:
23/6—-2-2 PLA
U=-KX= [FOR] = [23/ 6 0—22] OBL
, " INV

Therefore, -
FOR ( t ) =-(23/6)PLA(t)-20BL(t)~24INV(t) (18)
PSR(t)%~(23/6)PLA(t)—24INV(t)

VI. MODIFICATION OF THE ORIGINAL MODEL

The control policies obtained from the application of the
eigenvalue assignment (equation (18)) give the expression for
factory order rate, FOR and production start rate, PSR. They are

System Dynamics ‘91
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in general agreement with the results of (Mohapatra and
Sharma, 1985). - The negative sign of the terms reflects the
negative feedback

The expression for FOR indicates a negative negative
relationship with the level of pipeline delay, order backlog and
inventory. The factory order rate, FOR, is the rate ‘at which
distribution orders goods from manufacturing, and feedback
control is obtained by means of order backlog, OBL, and work in
progress denoted by PLA. Manufacturing adjust their production
against the backlog of unfilled orders and the amount of work in
progress, PLA, so as to deliver the finished goods to
distribution after a delay. These finished goods then become
inventory, INV. The amount of actual pipeline ‘content * (or
work-in-progress) PLA directly affects the inventory INV. Jevel
in the transient 'period. Control is achieved by taking into.
account the large amount of goods inside PLA as well as OBL. ‘In
this way the system responds faster and more to changes in the
exogenous variable, sales rate, SR. :

In the expression for production start rate, PSR, the order
backlog term is absent .and PSR depends:-heavily on: -pipeline delay:
and inventory. The production start rate, PSR, -is controlled by
both PLA and INV. - PSR is be cut back as the levels of
inventory,: INV:-and pipeline order, PLA rise. This information
on ‘the  dependence of production start rate, PSR on pipeline
order, PLA and on inventory, INV have also been derived by
(Mohapatra and Sharma, 1985). It is. shown here and also. by
(Mohapatra and Sharma, 1985) that new information sources can be
derived through the use of modal control theory. However, it is..
not realistic to apply the values provided in K of equation (18)
directly on a system dynamics model. By examining matrix K,
some important facts may be observed. It is important that the
factory order rate, FOR should contain the terms, pipeline
content actual, PLA, order backlog, OBL, and inventory, INV as
shown in equation (18). -

The states used in equation (18) are departures or deviations of
the variables from the desired values. Also, the initial values
of each of the state variables is implicitly assumed to be zero

when equation (18) was generated.  However, the exogenous
variable, sales rate, SR has an initial value of 100 units per
week. Therefore, a realistic policy de51gn for factory order

rate, FOR should contain a term of average sales rate, ASR (To
ensure initial steady state condition) and the terms showing
deviation of the desired values for actual pipeline content -
PLA, inventory, _INV. -

The equatlon for factory order’ rate, "FOR 1is as fbllQWS:
(RBL—OBL),+ (PLD-PLA) + {DINV-INV)

FOR=ASR ' + TAEL —  YTAPL | TAI~‘f‘ - (19)
and for ~production start rate, PSR - we = _would: have

— (DINV-INV) (PLD-PLA)

PSR=ASR + TATP + TALP (20)

where TACL, TAL, TAI, TAIP and and TALP are time constants.

For comparison purposes the values of the values of the time
constants used here will be similar to that used by (Mohapatra
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and Sharma, 1985) and they .are as follows: TABL=6 |,
TAI=TAPL=TALP=12 and TAIP=4. The design policies given by
equations (19) and (20) are then used in lieu of the original
rates given by (Coyle, 1977) as

(DINV-INV) + (PLD-PLA)

FOR—ASR* TAT TAPL

and PSR=APL ;
The modified model is then ‘simulated using DYNAMO.

VII. RESULTS AND DISCUSSIONS

The ‘simulation results of the revised model reflecting the
policies in equations (19) and (20) are similar to those.
obtained by (Mohapatra and Sharma, 1985). = The revised policies
determined in this paper give better results in several aspects
than those obtained in the original study(Coyle, 1977).

The fluctuation in INV is much smoother and it comes back to a
steady state in a much shorter time than in Coyle’s model. The
inventory level does not go down as much as in the original
model, and the order backlog decreases substantially. The .
revised model reacts much faster and settles down much earllier.
There is ‘also improvement in the variation of factory order
rate, FOR. The variation is‘  smoother without abrupt jump
between time 10 weeks - and 20 weeks. Similar improvements.can
also be-noted in the production start rate, PSR. 'The variables
settle down in almost the same ‘time as Coyle’s model.
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