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BYNAMO:SYSTEM DYNAMICS SIMULATOR FOR BEGINNERS AND
EDUCATIONAL USE

Hisao Shiizuka
Department of Electronic Engineering,
Kogakuin University
Nishishinjuku 1-24—2 ‘Shinjuku-ku, Tokyo 160, Japan

1. THE PURPOSE OF OUR IDEA -

It is well known that BASIC language is quite a popular one in the
world. So it goes without saying that by using BASIC language, the system
dynamics simulation can be provided more easily than DYNAMO does.

This paper describes a simulator for system dynamics, which is
implemented by BASIC on Personal Computer PC-9800 series. We call the
simulator "BYNAMO". BYNAMO is designed by using many graphic
functions of the BASIC Ilanguage, so as to increase efficiency for
programmlng the system dynamics equations.

It is a strong point of BYNAMO that operations for BYNAMO are simple
and easy, so that begmners can study the system dynamics without much
experience for programmmg

2. FEATURES OF THE SYSTEM

For the purpose of beginners and educatlonal use, BYNAMO has the
following seven featuers:

(1) It can be described models for system dynamics by s1mplc
sentences based on BASIC language.

(2) It can program SD models by understanding definitions - of
equations to be described, even if DYNAMO language is not understand.

(3) We can display good presentations, such as graphs, tables for
outputs, using many graphic commands.

(4) It has a good efficiency for handling, by using multi- wmdows

(5) In order to build models easily, we define user-defined functions
in addition to included functions of BASIC language.

(6) We can modify our system so as to fit users, because it can use all
of commands, BASIC language. ‘

(7) We can run models immediately, buﬂt by BYNAMO without any
process, such as compiler.

3. MAIN FRAME OF THE SYSTEM

The system has two main parts: one is used for simulation and
building models, another is used for representation of ‘graphs and tables,
whose construction is shown in Fig. 1.
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MAIN MENU

<

SAVE MODEL "BUILD MODEL'

LOAD DATA

SIMULATION

PRINT QUT p
(MODEL LIST) GRAPH QUTPUT SUB-MENU SAVE DATA

TABLE OUTPUT. | PRINTOUT
- ’ : (TABLE,GRAPH)

Fig.l System Configuratlon for BYNAMO

4. PROGRAMMING EXAMPLE

The programming language is based on BASIC and we can easily
obtain system dynamics equations. One example, which is known as Kaibab
plateau model is glven as follows

2010 *Z.CONST
2020 DP=4000
2030 PP=8000
2040 F=350000!
2050 FCAP=350000!
2060 AREA=800000!
2070 NFPD=1
2080 RF=.2 ,
2090 RST=1905 S
2100 DGRFT$="-.75/-.50/-.25/0.00/0.12/0.20/0.23/0.24"
2110 DKRT$="0.00/0.20/1.20/3.20/5.40/7.60.8.60/9.30/
9.80/10.0/10.0"
- 2120 PGRFT$="-.40/0.00/0.02/.035/.045/0.05/.055"
2130 FRTT$="20.0/8.00/3.00/2.00/1.00"
2140 FCPDT$="0.00/.0.25/0.50/0.75/1.00/1.12/1.20"
2999 RETURN o o
3000 '*** RATE, AUXILIARY EQUATIONS ***
3010 *Z.RATE
3020 PBR=FNSTP (RF,RST) *PP
3030 FDP=F/DP
3040 FR=FDP/NFPD ,
3050 FRT=FNTABL (FRTT$,F/FCAP,0,1!,.25)
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GR= (FCAP-F) /FRT

FCPD=FNTARL {FCPDT$,FR,0,1.5,.25)
FC=DP*FCPD
DGRF=FNTABL (DGRFT$, FR, .25, 2!, .25)
DNGR=DP*DGRF

DD=DP/AREA

DKR=FNTABL (DKRT$,DD, 0, .1, .01)
DPR=DKR* PP ,
PGRF—FNTABL(PGRFT$ DKR,0,.6,.1)
PNGR=PP*PGRF

RETURN

t¥%% LEVEL EQUATIONS ***

*Z7 . LEVEL

F=F+DT* (GR-FC)

DP=DP+DT* (DNGR-DPR)

PP=PP+DT* (PNGR- PBER)

RETURN

t+%%* TAKING IN VARIABLES *%**
*7, . PUSH

e e T VARIABLE (1)

————————————————————— VARIABLE (2)
z(2,2.J%)=F

--------------------- VARIABLE (3)
Z(3,2.J%)=DP

RETURN
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Fig.2 An output example of Kaibab plateau model
(comments in Japanese).
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5. CONCLUDING REMARKS .

Our system, BYNAMO, will provide a suitable tool for beginners. We
have had a society for the system dynamics and related problems, which
belongs to the Operations Research Society of Japan, which has a meeting
every month. Through the meetings, we feel that there are a lot of people
who want the computer tool to be ‘executed by - personal computers,
especially, PC-9800 series. That is reason why, we have developed this
tool. We are going to improve BYNAMO to more comfortable tool for
beginners and educational use. B
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2. Stability Robustness
2.1.Basic definitions and theorems

A linear time—invariant system is denoted as:

- X= F(V)X (1)
where: 1.) The set of parameter variations v is assumed to be polyhedron of
the form: ’

Ve (V: ISv<u ueR") )

land u are given constant real vectors.
2YFQisa multlple lmear function of paramctcr vector v,if we fix
other components of v. ,j (v) onlyare linear functlons of v,
The vector number of convex polyhedrom is N = 2 ,whcrc q is the numbcr'
of variable parameters,the corresponding. vectors are dcﬁned as:
a),vm ¥ ")
The corresponding state matrlces are:
-—F(v }, ie{l, 2 ,., N}
Lemma(2.1): Fora lmear control system defined by eqns (1) and (2),if there ex-
ists a real symmetic positive—definite matrix P,such that
PO+ F o P <0, 1€ {1, 2, .. N}
then system (1} is asymptotically stable(¥v € V).

Definition(2.1): For 4 = (a,)eR"""if a, 20, [,y €fl, 2, .., ahthen A is
named non-negative matrix( written as A>0).

Lemma(2.2): For A BER" il 4< IAI - B,then any eigenvalue-of matrix A
is less than the maximum eigenvaluer of matrix B, that is

Al r
Proof: By the theory oi‘ matrnces we have, , ‘
g |4]” ,me.l 2, 3
IFO<A<B,then:
0g4"<B" @

Combine eqns.(3) and (4),we have |
<" < |8 |

Morever,because |4 | < | B|,then .
H4ll, < 1IBll,

According to the propertu.s of L,norm

4l <1] iAl 1
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Na™ <l la™ 1 <lls™l, 5)

a1 <l a0 <m0,

When m—~oo,we have
pldY< p(4)} < p(B)
Therefore .
Al r

Let the numbers of variable entries of state matrices A and B be

respectively g, and g ,,then 271t subsystems can be formed.The scts of

~ system can be dcnotcd by ; ]
o . 1 . d
?=4"%" +B U=, + 04" x4+ 8° U”

iefl, 2, .,2"""} )
where 4 | is the asymptotically stable matrices of nxn norminal system.

Definition (2.2):Let the disturbance matrix be
o ./_\A”)zﬂ’E : 10
where E, are’ constant describable matrices,in whlch the maximum entries are

1,while f} are uncertain parameters.

Definition (2.3) Let A be n—order matrix,and
A, ,=LlLwhen Ay #0

From definition (2.2) and (2. 3),apparcntly
, L= |E | 0
If 8= maxf , ie{1, 2,. . ., 2“‘“’} then the following -
1]

theorem can be established.

‘Theorem (2.1):Let the sets of systems be defined by eqns.(6),if
i +
s AAYT ief1,2,. .. 27

and P= P > 0,then we have

()
maxi P&, +AA

Aw12,,2%%%

-B'Gy+ A, + A"~ G)TP
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< maxd, P@A,+sA-B"'G)+ @A, +s8~B"G) P

max
im), 2, .. 3%

Where G is feedback gain matrix.

Proof: since eA 2 AA', ie {1,2,...2%% ")

Therefore A, +sA—B' G2 4, +04 " —8'"¢

ief1,2 ...2m7")
Moreover,because P= P . > O,then
PU, +A-B "Dz PU, +04" -2 ) @)
and: , - ,
| U, +sr-B""6Y Pz, +04"" —8"c)" P ©)
According to Lemma(2.2), we have '

maxh,_ [PU,+04" -8 Gy U, +204" -8 6) P
t=1, 2 .2N%N

< maximax[P{4  +80 — B( ' }G)-+7(."41-n + 8A -—;3;‘(’ ’G}T'P}_'

tm1,2,.2% %0

Theorem (2.2):if there exists a,,re,a'l synimetric positiﬁe-—dcﬁnite ’matrix
P,such that V _
P(A, +38A —B' G)+(A +80 —BG) P < ,iell, 2,...2"F @D

then system X =4, +aA)X +B(”U " is asymptotically stable.

Co-rollary @.1)
(4, +8A ~ B G) P+1’(A + 8 — Bf G)Jxma\,t

max max [(An
1=12,. 2'- fe12,.2%

res—Be) P+P(d, +8— B ey
( Proofsee [71.)

Theorem (2.3}:Assuming that P is a real symmatrlc positive—difinite
matrix,such that

=4, [PU,+sr—B' ‘G_‘)'+_(Au+az$——B ey e,

ie {1,2,...2"}
ien n,(p)are continuous, convex and differentiable,(Proofl sec [7)).
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Definition (2.4):A function g(p}is

g(py= max {n (o) {11}

. 12 .
=520

From theorem 2.3),g(p} has the properties of . (p)

Derinition (2.5} ,
h(g) = maxitmax (PFy(an+ F {vig)P} _ {12}
| £33 20]
2.2 Caculating Programme
According to the definitions a=d thzorems given above,he caleulating pro-

gramme of stability robustness is ¢2zoted as Fig. !,

’

A N N (IS R
OEEITY 3,18t n{& ;=0

1
{ Search P,g{P)—wuin
L

[}]

N

Print :&max

Fig.1.

The convegence property of the above-algorithm is guaranted by the foi-
lowing theorem.

Theorem(Z.4): The above algorithm gives a series {sq}.This series

are either definite or indefizite,but there’s always a limit Hmsq

G- @

.. , . . T, .~
=sm.It 1s impossible for 8>a that satisfies PF(v}+ F (v)P

<0P=B">0veVE)
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{Proof see [11.}

3. Performance Robustness
Lat the sets of system be defined as eqas.(6),their weighting performance
index criterion is
N A
=YCJ,=2C,T (8 (13}

te | leal

where, C are we:gbtma factor. SL are subiecf to Lvapunov s Eans.
m (z } (i)

(4 G) 5 +8,{4 —z' G‘r+Q+G "RG =10

then the performance index criterion has its minimum value.

Theor\.m 3.1y Lzt the sers of systems De ietmed by eqns./6} and the
nerformance index critgrion be defined by eans.(13; If and only if there
axists an initial feedback matrix G. ,w .ich is subject to R | il d 0

) .
~B8 G, <0 ,then there also exis:s an optimal value G

suci that J(G) is minimized.{Proof see [67}

4. Robustness Synthetical Algorithm

Combine the two algerithms above,then a avathetzcal robustness algorithm
is founded.This algorithm not only gives the laroest stability region,but mini-
mizes the performance index criterion as well i.Detailed algorithm see Fig.2

5. Examples
Counsider the following system
X=AX + BU
where:

(o]

A=| 1176 —5.389
0 1

=

[ —1356 0.2232 0] r,ﬂ.m?"
i
i Ai
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jind G.such that i_ (A }— B( )G}<10

jind P=P" >0, PeQ.such thas
t

i (P40 =BG + [A0) =BG, P} <

max !

find a?,such that h(a"}=8

t

jind P, such thar g(Py—min Pcid
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If using Badr’s algorithm, it needs calculating 4396 sub-system
states.However,according to the algorithm proposed in this paper,it only needs
calculating § sub=—system ststes.Calculating results are shown in Table 1 and 2.

Tabie 1 Badr algorithm

Times| C C 2 x 10 J{G) JANN 5288 B G

1 21 0.0125 3.7003 | 13.0917 | 2.219 | 30853 | .10492°| .3163

o
o

0.00625| 3.5545 | 12.9046| 0.758 | 70812 | .10481 | .3162

3 3 19.00312 3.5219 | 12.8531 0.356 | 70823 | .10490 | .3162

Table 2 improved Algorithm

Times cJ c. e, x107| JG) | &t G
to| 2| 02 30974 | 18.3834 | 47.44 | 1.0741 | 15364 | 4740
2 | 6| 01 | 28573 | 157117 | 23.07 [0.8911 | 12854 | .4062
3 |8 005 2.7845 | 14.0931 | 10.04 [0.8742 | 12456 | 4032






