AN INTERACTIVE SIMULATION GAME
FOR SOFTWARE PROJECT MANAGEMENT (SOFTSIM)
. by
Yaman Barlas
Ibrahim Bayraktutar

Department of Systems Analysis
Miami Universi
Oxford, OHIO 45056

ABSTRACT

Various uses of system dynamics models in understanding and managing software
projects have been discussed in a series of articles by Tarek Abdel-Hamid and Stuart
Madnick. Our work extends Abdel-Hamid and Madnick's work by constructing a
simulation game that can be used by managers as a participatory learning laboratory. The
game is implemented on IBM-PC environment, using the graphics-based spreadsheet
software WingZ. Initial tests of the simulation game have demonstrated it to be robust and
realistic. The game is now in the process of being tested extensively by players with
different backgrounds: undergraduate and graduate students of systems analysis, faculty
members, and software/MIS professionals. In addition to describing the game, our talk
will contain lessons learned from these extended tests and experiments. The presentation
will also involve an active demonstration.

INTRODUCTION

Software industry is one of the most rapidly growing businesses in our age. Yet, as
Abdel-Hamid and Madnick (1991) point out, this growth has not been a well-balanced one.
On the technical side, programming languages, techniques and methodologies have
exhibited an unprecedented growth. But on the other hand, the art and science of managing
software projects has not enjoyed such a growth, Abdel-Hamid and Madnick (1991) state
that management of software systems has been plagued by cost overruns, late deliveries
and poor reliability. They attribute this situation to a lack of fundamental understanding of
the software development process, caused by lack of research on the managerial aspects of
software development (Abdel-Hamid and Madnick (1989, 1991)). The comprehensive
system dynamics model of software management developed by Abdel-Hamid and Madnick
seeks to fulfill this need. The purpose of their simulation model is to "enhance our
understanding of™ and "provide insight into” the management of software development.
Our work extends Abdel-Hamid and Madnick’s work by constructing an interactive
simulation game based on their comprehensive system dynamics model. There is a growing
trend in system dynamics community to transform system dynamics models into ggnamjc
interactive games, in order to create “reflective leaming environments" (Kim (1989),
Meadows (1989) and Andersen etal. (1990)). It is believed that such interactive simulation
games promote active learning, convey principles of systems, and provide context for
systems research and evaluation (Kim (1989) and Graham et.al (1989)). Our purpose is to
design an interactive game in which players make some key software management
decisions that determine the course of the simulation. Players' objective is to complete a
given software project within a given time, subject to a given budget limitation. In seeking
this goal, players get a chance to test various strategies in this "laboratory," without risking
actual budget overruns or late deliveries. Players are expected to gain insights into the
effectiveness of various management strategies, by adopting some sort of "systematic trial
and error” approach. The ultimate objective of this project is to use the simulation game as
an interactive learning laboratory to train software management students and professionals.

- 59 -

DESCRIPTION OF THE GAME

The software management simulation game (SOFTSIM) consists of three parts: 1- the
system dynamics model which drives the simulation in the background, 2- the decision
controls, which is the summary information screen where the player either makes decisions
or chooses to see more detailed information, 3- the information system that organizes and
presents the data the player wishes to analyze.

The system dynamics model behind the interactive game has essentially the same
structure as Abdel-Hamid and Madnick’s model. Thus, like their model, our model too
focuses only on the development phases of software production. (ie. the initial software
planning/definition and the very last software maintenance phases are not included). The
model consists of seven major sectors: Human resource management, manpower
allocation, software development, quality assurance and rework, system testing, and -
controlling/planning. These sectors are naturally interconnected, as illustrated in Figure 1.
For more information on the individual variables and equations involved in these different
sectors, see Abdel-Hamid and Madnick (1991). Our model differs from theirs in two
aspects: first, we simplified their model to some extent in order to increase the speed of the
gaming version. We made sure that these simplifications did not change the behavior of the
model in a significant way, especially with respect to the purpose of the game. Second, we
had to make several changes in those equations that are directly related to interactive player
decisions. These variables will be described in the next paragraph. Readers who are
interested in these technical differences between Abdel-Hamid and Madnick’s model and
our version are referred to Bayraktutar (1992) and Abdel-Hamid and Madnick (1991). Let
us finally note that we have extensively tested our version under numerous (mostly
"extreme") conditions and found its structure to be quite robust. We have also verified the
accuracy of the interactive gaming version, by entering the decisions internally made by the
closed-loop system dynamics model, as synthetic "interactive player inputs.” In all cases,
the behavior patterns obtained by the decisions-in-the-loops version and the interactive
gaming version were identical. (See Bayraktutar (1992)).

The "decision controls” screen, analogous to an aircraft's cockpit, displays the most
important information, and allows the player to make decisions or request more detailed
information (figure 2). Four crucial summary indicators (Scheduled Completion Date,
Cumulative Man-days, % Development Tasks Completed and % Testing Tasks Completed)
are displayed in graphical form for maximum clarity. Information on ten other important
variables is also included in the same screen. (Issues involved in interactive gaming screen
and other aspects of game design are discussed in Andersen et.al.(1990) and Meadows
(1989)). In the controls screen, the player examines the key summary indicators, and then
either makes a decision ("make decision” button) or chooses to analyze more data ("more
information” button). Once she feels ready, she is asked to make three decisions: 1- % man
power to be allocated for quality assurance, 2- % man-power to be allocated for rework
(the remaining man-power is used in development and testing), and 3- staff addition or
removal. (See the decision input windows in figure 3). Once all three decisions are made,
the simulation model runs for a short period of time (this "decision period” is either 10 or -
20 days, depending on the size of the project). At the end of the decision period, the player
is presented with the current summary information, resulting from her most recent
decisions. And this process repeats itself until the game ends.

If, in the controls screen, the player wishes to analyze more information before he
makes decisions, he must access the "information system” by clicking on "more
information” button. She is then presented with a long list of additional model variables to
choose from (the scroll-bar list shown in figure 4). The player then chooses variables (one
at a time) from this list, and examines their history and current values. (Figure 5 illustrates ,
what kind of information the player, upon choosing a variable, is presented with). After ,
having analyzed information on various variables, once the player feels ready to make 11
decisions, she clicks on "back to main"™ which returns her back to the main controls screen r
where decisions are made. :

The game is started by running the WingZ program called SOFTSIM. In the opening
screen, the game offers various options for the player to choose from: Small project versus -
large project; project size exactly known versus project size underestimated: and "easy”
version (hiring delay=decision period) versus "difficult" version (hiring delay # decision
period). Any one of these options can be selected by pulling down the "options” menu. The
most difficult version of the game is obtained when the project size is underestimated and
the hiring delay # decision period.

The objective of playing SOFTSIM is to complete the given software project within the
given time and budget constraints. If a player can accomplish this, he gets a congratulation
message at the end. But there are also three undesirable ways in which the game may end:
the player may exceed the given time limit, she may exceed the given budget limit, or
worse, he may exceed both the time and budget limits. In any of these three cases, the
player is shown at the end a message indicating the problem.

We have tested the validity of SOFTSIM, by entering a wide range of synthetic player
decisions (most of which extreme and unlikely). The game proved to be quite robust and
reliable, even under extreme decision inputs. We then extended these tests, by exposing the
game to external criticisms by independent players. None of the ten players who tested the
game raised any substantial criticism of the structure of SOFTSIM. In each of these ten
experiments, SOFTSIM yielded behavior patterns that were plausible, realistic, and
consistent with the decisions made by players. The only major criticism of the game (which
we agree with) is its speed. Currently, a typical game session with the "small” project
option lasts about 1.5 hours. For the game to be of practical use, this speed must be
increased, possibly doubled.

EXPERIMENTAL RESULTS

We now present information on performances of eight different players (two systems
analysis faculty members, four graduate students and two undergraduate students). Table 1
summarizes performances of these eight players at the end of the game, as well as the
performance of the decision-in-the-loops version of the simulation model. Observe in the
first row of Table 1, that as many as six out of eight players finished the project earlier than
the model did. But, none of these eight players was able to complete the project with less
budget than the model did (the fourth row in Table 1). As a matter of fact, several pl?fyers
came pretty close to the bankruptcy limit (2500 man-days). There is a natural trade-o
between completing early and staying within the budget. It seems that all of the eight
players put much more emphasis on completing early, than they did on controlling
expenditures, although both factors were equally emphasized during game briefing. (Could
this consistent bias of over-focusing on time constraints be a cultural one? Could it be an
artifact of the contemporary, fast-paced way of life, where most decisions are dictated by
sort-term time constraints? We leave such questions to the .

The last four rows of Table 1 display actual decisions made by the players (and the
model) at the end of the game. As expected, Manpower allocated to Quality Assurance,
Manpower allocated to Rework and New Workforce are all zero, since, toward the end of
the project, all development (hence quality assurance and most of rework) activities are
complete, and the entire workforce is allocated to testing. (An exception to this rule are
players 4, 5 and 8 who have a small fraction of their manpower allocated to rework at the
end). Note also that the Daily Manpower for Development/testing (DMPDVT in row 7)
actually corresponds to testing exclusively, since there is no development activities at the
end of the project. The very last row represents the ending (experienced) workforce level
(new workforce is naturally zero at the end), which displays substantial variation, ranging
from 1.22 (player 3) to 13.45 (player 4), and the model's being 4.53. Once again, observe
that the entire ending workforce is devoted to Daily Manpower for Testing (row 7), with
the exception of players 4, 5 and 8, for reasons explained above.

It is also informative to examine the dynamic behavior patterns generated by the players
through the game. Due to space limitations, we are only able to show one illustration.

- 61 -

Figure 6 depicts the behavior patterns generated by player 1. Figure 6a displays the
dynamics of five major variables. (Perceived Job Size, PIBSZ never changes, since in the
simpler version of the game, it is assumed that the exact project size is known). Cumulative
Man Days (CUMMD) increases linearly, and the project is completed when it catches up
with Job Size in Man Days (JBSZMD). Notice that there is a late increase in JBSZMD, that
represents the fact that, toward the end of the project, realizing that we have been
overestimating our productivity, we correct our estimate of JBSZMD upward. Note that,
when Cumulative Tasks Developed (CMTKDV) catches up with PJBSZ, the project is not
yet complete; this is the time when (almost) all manpower gets allocated to testing. This can
be more clearly seen in Figure 6b: The point in time at which CMTKDV=PJBSZ, we see a
significant drop in Daily Manpower for Quality Assurance (DMPQA) and Daily Manpower
for Rework (DMPRW), and a significant jump in Daily Manpower for Testing (DMDVT).
Finally, WFNEW in Figure 6b represents the player's hiring policy. The player hires more
than enough staff very early in the project, and then gradually dismisses them as the project
gets completed. This initial jump in the workforce level also causes the early estimates of
the Scheduled Completion Date (SCHCDT) to be lower than later realized. (Compare curve
4 of Figure 6b and curve 1 of Figure 6a).

CONCLUSIONS

We have developed and tested an interactive software management game (SOFTSIM)
based on Abdel-Hamid and Madnick's model. Exglelriments demonstrate that SOFTSIM
responds to player decisions in a robust, meaningful and realistic way. Reactions of players
have been in general very positive. One weakness that has been observed is the speed of
the game. For the game to be used as a practical learning laboratory, its speed must be
substantially increased.

The game also promises to be a useful platform to test different theories of dynamic
decision making in the context of software management. For instance, Sterman (1989)
carries out such a decision-theoretic research using an interactive macroeconomic simulator.
SOFTSIM promises a platform to extend/replicate the research in the area of software
management. Finally, using SOFTSIM, one can use direct experimentation to test the
validity of decision equations used in Abdel-Hamid and Madnick’s model. (See Sterman
(1987)). Our initial tests show that behavior patterns generated by players and those
generated by the non-interactive version of the model display remarkable similarities.

REFERENCES

Bayraktutar, Ibrahim. 1992. A Simulation Game for Sofiware Project Management,
Master’s Report, Department of Systems Analysis, Miami University, Oxford, OHIO.

Andersen, D.F., Chung, LJ, Richardson, G.P and Stewart, T.R. 1990. Issues In
Designing Interactive Games Based on System Dynamics Models, Proceedings of
Imternational System Dynamics Conference: 31-45 o

Kim, Daniel H. 1989. Learning Laboratories: Designing a Reflective Learning
Environment. In Computer-Based Management of Complex Systems, eds. Peter Milling
and E.O.K. Zahn, Springer-Verlag, Berlin.

Meadows, Dennis.1989. Gaming to Implement System Dynamics Models. In
Computer-Based Management of Complex Systems, eds. Peter Milling and EO.K Zahn,
Springer-Verlag, Berlin. ’

Sterman, J.D.1987. Testing Behavioral Simulation Models by Direct Experiment.
Management Science 33: 1572-1592

Sterman, J.D.1989. Misperceptions of Feedback in Dynamic Decision Making.
Organizational Behavior and Human Decision Processes 43:301-335.

Abdel-Hamid, T.K. and S. E. Madnick. 1991. Software Project Dynamics, An
Integrated Approach. New Jersey: Prentice-Hall. :

Abdel-Hamid, T.K. and S.E. Madnick. 1989. Lessons Learned from the Dynamics of
Software Development. Communications of the ACM. 32: 1426-1438

...89_.

MANPOWER
ALLOCATION

SECTOR

AN

WORKFORCE

L/ ANN

SECTOR

=

QUALITY ASSURANCE N / 7

AND REWORK
SECTOR SYSTEM
TESTING
SECTOR

Figure 1. An Overview of the Simulation Model

DEVELOPMENT

SECTOR

CONTROL AND

PLANNING

SECTOR

SUMMARY INDICATORS

Scheduled Completion Date Cumulative Man-Days % Development Tasks Completed| % Testing Tasks Compleied
239.31 0.00 0.00 0.00
500.00 2500.00 100.00 100.00
4 " 4 4
400.00 200000 - 80.00 - 80.00
300.00 1500.00 - 60.00 - 60.00 -
200.00 1000.00 40.00 40.00
100.00 50000 20.00 2000
0.00 0.00 0.00 0.00
Daily Manpower on Man Days New Worklorce..umssseecssecsses 0.00 People
Development and Testing Man Days Experienced Workforce...e.eee.rr " 2.80 Peoplc
Manpower 0n TESHNG covvesserers Man Days Current Perceived Job Size...... 416.67 Tasks
Manpower on Quality A. wee. Man Days Current Perceived Job Size...... 1339.07 Man Days
Manpower on Rework ceewumeers Mun Days Cumulative Tasks Developed... 0.00 ‘Tasks
Cumulative Thsks Tested.......... 0.00 Tusks

CURRENT TIME : 0

Figure 2. Main Game Screen

gg.

% _ REWORK

-

STAFF_ADD/DELETE

Youhave 2.79 Y:dq‘;lave 237 Enter a negative value
. aily manpower s
as daily manpower, remaining, what percent to add and positive
what percent of it do of it da you want 1a value fo remove people
you want fo allocate for allocate for rewprk? for the following 10-day
quality assurance ? |[REMEMBER, the rest period
will directly ga to
development and
testing]

Figure 3. The Three Decision Input Windows

WORKFORCE SECTOR:
New Workforce

|Peopie}
e
ity Manpower raining {Ma
MANPOWDER ALLOCAM TION S “'g'WD"l
Total Daily Man an-Dayy/Ds
Qamul_ltiz Mmpg:;f [Mu!—lD-ynl
Daily Manpower Allocated for Quality Assurance {Man-Dayw/Day}
lD)::z :A“n ::m[)evelop!nen miTenm;D.y [Man-Days/Day}
anpower for t a i 8y
DE\{)?;,O&:(ENT S?C!‘OR: ,
i n| for Development {Man-Dsyw/Day]
Fraction of Effort for System Tﬂﬁrlemembnlm]
ment Tty {Tasky/|
Exhaustion Level [Exhaust Units) -
QUALITY ASSUI AND REWORK SECTOR:
Error Generguock Ralz‘(fnwbay) - 0 .
Error Detection Raite doe to Quality rance (Errors/Day|
Detected Errors Not Yet Reworked (Erron)

Figure 4. Information Selection Window

SO 100 150 200 250 300 350 400 440 00

Current Value: 62.7564 Errors

Figure 5. An illustration of graphical information obtained, once a variable is selected.

- 66 -

Lg

Player # 1 2 3 4 5 6 7 8 Model

TIME 262 162 232 161 295 287 266 188 m

SCHCDT

{Scheduled Completion Date) 217 161.54 m.2 160.41 29402 286.96 265.75 187.28 270.36

JHSZMD

(‘final Job Size In Man Days) 1529.81 2039 212930 | 226736 | 163568 2486.81 149347 | 205540 1339,

CUMMD '

{Cumulative Man-Days Expended) 1530.80 2045.44 2127.93 2276.02 1640.11 2487.98 1494.05 2060.52 13323

PIBSZ

{Currently Perceived Job Size) 41667 41667 416.67 416.67 416.67 416.67 41667 416.67 416.67

CMTKDV

{Cumulative Tasks Developed) 416.67 416.67 41667 41667 41667 416.67 416.67 416.67 416.6%

DMPDVT

(Daily Manpower For :

Developemnt/Testing) 484 9.30 12 10.11 285 555 217 6.88 4.54

DMPQA

{Daily Manpower For QA) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 043 o

DMPRW

(Daily Manpower For Rework) 0.00 0.00 0.00 7 190 0.00 0.60 1.21 00

WFNEW

(New Wotkforce) 001 0.00 0.00 0.0 0.10 0.00 0.00 0.00 024

WFEXP

(Experienced Workforce) 48 930 1.2 1345 465 555 217 852 453
Table 1. Summary of Performances of Eight Players and the Performance of the Model.

U ———

1.SCHCDT 2.JBSZMD 3.CUMMD 4. PJBSZ 5. CMTKDV
1 500.00
3
3| 250000 ‘
4 500.00 >
3] -
250.00 ¥
5 : 2 -
3| 1250.00 - — - A
4 N, e T
q 0 2000 [N T :
5 -4
R
4
1 0.00 ‘,"'//
) o
3 0.00 o
4 0.00
5 00 0.00 87.50 175.00 262.50 350.00
Time
Figure 6a. Behavior Patterns Generated by Player 1.
1.DMPDVT 2.DMPQA 3.DMPRW 4 WFNEW 5. WFEXP
1 8.00
2]
3| 400
4 1000
5—
——]
1 4.00 5
; ¢ S
3 2.00 —-.‘—_,.-s_.._______j T4
4] T ————
§ so . ‘
] . '3
13 0.00 \ 2 T
7
3f 000} ———
i oo
] 0.00 87.50 175.00 262.50 350.00
‘ Time

Figure 6b. Dynamics of Decisions Made by Player 1.

- 68 -

