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ABSTRACT

We treat some problems of controlling the development of a
two-phase system which is identified with the evolution of
its inter-face. First we study the class of so-called
decision change regimes and find out an estimate for the
number of decision changes. Then we consider the
possibility of optimal control in this class.

§1.PROBLEM STATEMENT

Behaviour of many socio-economics systems (population
structure, industrial development and air pollution...) can
be modelled by a system consisting of two-phase separated
by a common inter-face (free-boundary). Moreover, the
development of the system is, in a certain sense,
indentified with the evolution of the free-boundary. So the
problem of studying the dynamics and regulating the
evolution of the free-boundary is of a great interest.

Denote by x and t the space- and the time-variables
respectively, by u(x,t) the state of the system and by x =
s(t) the inter-face. The mathematical model of the system
is following:

l (1.1) @ Uyy  =Ug
: in Qp7(s(.)):= {(x,t)e R%: a< x < s(t), te (0,T)},
u (x,0) = &(x), x€ [a,b],
uy, (a,t) =0

} te [0,T];
uT(s(t),t)=0
(1.2) @yt = upt
in apt(s(.)):= {(x,t)e R%: s(t)< x < ¢, te (0,T]},
u*(x,0) = #(x), xe [b,c],
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u,t(e,t) + aut(c,t) = -f(t)
} te [0,T];
ut(s(t),t)= o

s(b) =
(1.3) {
S(t)= -6u, " (s(t),t)+ sau, T (s(t),t), te [0,T].

Here a< b< ¢, T> 0, @1, @3, @, 6; and 6, are given
positive constants. !

The problem of finding a triple {u~ («,.), ut («74)r s(.)}
which satisfies (1.1) - (1.3) is Xxnown in mathematical
pPhysics as the two-phase Stefan problem.

Let flux f(t) be determined from the control equation
(1.4) Bf(t)+ £(t)= pP(t), t> 0, £(0)= o,
where p(t) is the decision of controller C to which the
system reacts with a certain time lag @ 2 0. (we suppose
that s(t)= So(t), te [-8,0], is observed previously).
Moreover, there is a region desirable for s(.):
s1(t) < s(t) < s,(t),
S3(.) and s,(.) being given such that
(Al) a < s;j(t) < Sa(t) < ¢,
sao(t) - sj(t) 2 u >0, t 2 0.
Finally, let SO (s*) be the set of passive decisions (the
set of active decisions) of the controller C:
(A2) 0esPe (0,17, 1 € st « [0,17],
p% € SO, pt ¢ st -» p% < pt.
So, observing the evolution of s(t), the controller C takes
at time moment t
a passive decision p? ¢ 5O if s(t-0)= s7 (t-8)
and the decision was active just before:
anactive decision p* ¢ st if s(t-e)= 55 (t~8)
and the decision was passive just before.

In the case 80 = (0}, s* = {1} and without any time lag
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this hysteresis behaviour has been considered by Hoffmann
and Sprekels (1984). In the present paper we shall first
develop the results of these authors to the case where S0
and s have only restriction (A2). our special attention
will be paid‘*to estimating exp11c1tly the time interval of
realizalion of a decision change regime and the number of
decision changes by a taken decision change regime and the
parameters of the system. Then, in §3, we shall use the
freedom in choosing decision change regimes to minimize the
maximal deviation of inter-face s(.) from some given ideal
one, or to minimize the total cost for going out from the
desirable zone.

§2.REAL-TIME DECISION CHANGE REGIME

It was proved in Hoffmann and Sprekels (1984) that for
every control p(t), O0<p(t)=<1 ,te [0,T], the problem (1.1)-
(1.4) has a unique solution {u~(p(.):.,.), u (p( ),.,.)

s(p(.):.)} and moreover, s(p(. )ie) osc111ates at most N

times between sy(t) and s,(t) in [O,T, 1, N* being finite
an independent of p(.). In what follows it will be shown
that N* can be determined a priori.

From now on we shall write "regime" instead of "decision

change regime", for short.

Definition 2.1. A sequence p:= {py, i= 1,2,...,N%) is
called a pre-regime provided that
sO if s(-e)< s;(-8),
Po € { St if s(-8)2 s,(-0),
s® U st if s,(-8)< s(-8)<s,(6),
and
s if py € s*,

Px+1 “:i
st if Px € s0,

k= 0,1,...,N*-1,
Let p be a given pre-regime.
Definition 2.2. A sequence r:= {py, tx, k= 0,1,...,NSN*} is

said to be a regime (or a realization of pre-regime p) if

the following relations hold:
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to = O,
inf Mypyq if Mpyq % o,
i1 { .
+ o0 otherwise,
Mg := {te (ty,T): s(pit-6)=
sq (t-6) if py € st
A >
s,(t-6) if py € sO
s(pit):= s(p(.):t),
p(t)= p(rit):= px, txst<ty,,,
k= 0,1,2,...,N.

Consider a regime r= (ri,t;, i= 0,1,...,N}. Our goal is to

establish some a priori estimates.

Denote by f(r;.) the unique solution of (1.4) with p(.)=
p(r;.). One can see that f£(r;.) is monotone in every
interval (tk,tyx41) and the following inequalities hold:

(2.1)

where

(2.2)
where

(2.3)
where

nin {fy(r), fr41(r)) < £(r;t) <
max {fi(r), fx4q(T)} =
fr(r) if fi(r) 2 pg,
{ fri1(r) if £(r) < pPx, txSt<tyyq,

k-
fx(r):= £(r;k)= exp(—tk/B)iﬂi[exp(ti+1/B)—
exp(ti/B)1;

0< Fy(r)< f£(r;t)< F¥(r)s< 1,

Fi(r):= min (£5(r), i= 0,1,...,k+1} < £(xr;t)
< max {fj(r), i= 0,1,...,k+1) =: F&(r),
te[O0,tx4q1s )

02 uy (rix,t)2 -1 -1, (X,t)e ClaT(s(ri.))

TRE= max{a3Fk(r); |#(x)]|, bsxscy},
7:= max{a3; |®(x)|, bsxzc},

@4:= min (1,1/a},
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ot (s(ri.)) = ((x,t)e Rz:‘s(r;t)<x;

<c, 0<t<tk+1} ’
k= 0,1,..., N;

(2.4) IS(rit)|< max (65857, i= 1,2; §,FK(r); syary)
=: Ex(r), te {0,441, k= 0,1,...,N;
(2.5) [S(rit)|< max (638;/, i= 1,2; §,:6,ar)=: E,

p(.), te [0,T],
where

$;’:= max {|®'(x)|, a< x< b),

&57:= max {|&'(x)|, b x< ¢).
It is worth notlng that relations (2.4)-(2. 5) enable us to
estimate S(t) a priori and explicitly by a given regime and
by the parameters of the systen.

To continue we need the function &(.) to have the following
property:

(A3) a-b < T < c~b where
b c
Ti= (81/a7) S e(x)dx + (83/a5) S d(x)dx.
a

We are going now to formulate the main results of the
section.

Result 1(concerning the time interval of relization of

decision change pre-regimes).Every decision change pre-
regime p is realized uniquely by a_decision change regime

r:= {ry,t;, i= 0,1,...,N}, ty < T(p) £ ty4;, where N= N(p)

is the minimal from non-negative integers k satisfaying the
following two conditions (i) - (ii):

(i) k-1
(2.6) al,k-l(r):= = wj(r) max{f (r), J+l(r)}
j=0

< (1/65)(T-a+b),

- 103 -




k-1
(2.7) 02,k—1(r)‘= = wj(r) [aTj— min{fj(r), fj+1(r)}]
3j=0
< (1-65)(c-b-T),

mj(r):= tj+l -tj;
(ii) at least one of the following inequalities holds:
(2.8) 01,k(r) 2 (1/83)(T-atb),
(2.9) gy ,x(r) 2 (1-63)(c-b-T),
{by definition 01,-1-= 02,-1 = 0, so (1)-(ii) hold
automatically for k = 0).
Moreover, the time interval [0,T(p)] of relization of
decision change pre-regime p is defined as follows:
(iii) T(p)= T1(P)
where T1(p):= inf{te [ty,ty41]: al,k—l(r) +

(t-ty)max{fy(r), fyx4q(r)}= (1/85)(T-atb),
if only (2.8) takes place;

T(P)= T2(P)
where To(p):= inf{te [tyg,ty4q1: az,k-l(r) +

(t-tg)[aty = min{fy(r), fr41(r)} =

(1-§3) (c-b-T),
if only (2.9) takes place;

T(p)= min{Ty(pP), T2(P)},
if both (2.8) and (2.9) take place.

Thanks to Result 1 every decision change pre-regime p can
be identified with its unnique realization r= {r;,tj, i=
0,1,...,N= N(p)}, as we shall do henceforth.
Set for 0< ty < t* <T |
B(tx,t¥):= min{s,(t)- s;(t),tx-6stst*-e),
w(t*):= m(0,t%), wp(p):= Bltgy1)?
Dj (ts,t*):= max {|sj(t), ta-0stst*-e),i=1,2,
D(ts,t*):= min {Dj(t«,t*),i=1,2),
pi(t*y):= pl(o,t*), i=1,2,
D(t*):= min (Di(t*), i=1,2},
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Di(r):= D(tg43), Di= D(T)
.and let N(t*,t*) denote the number of decision changes in
the interval [t*,t*].

Result 2 (concerning the number of decision changes and

their frequency). The following estimates hold:

t*-t
(2.10) N(ty,t¥)< 1 + [E + D(ts,t*)1,
W(ts,t®)
0< ty < t* <1
bx (x)
(2.11) wp(r) 2 , k= 0,1,...,N(¥).
Ep(r)+Dy(r)

§3.0PTIMAL DECISION CHANGE REGIME

It follows from the results obtained in §2 that the control
to the system being considered is completely determined by
the decision change pre-regime p and it remains to choose
the latter. In the sequel we shall try to optimize this
operation, i.e. to use the freedom in choosing p to

minimize the maximal deviation of s(.) from a given ideal
interface o(.):

(3.1) J1(p):= max {|s(pit)-o(t)|, 0Lt<T(p)
or the total cost which must be paid for leaving the

desirable zone:

T(p)
(3.2) Jo(p):= S Jp’s(t)dt
o
where m1(s1(t)-s(t)) if s(t) < sq(t),

Jp,s(t):=( 0 if sy(t) < s(t) 2 sy(t),
mo(s(t)-s,(t)) if s(t) > sa(t),
71 and 7, being given positive coefficients.
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Denote by PR the set of all p0551b1e decision change pre-
regimes corresponding to a taken pair (S0 S+) Thus we are
led to the following optimization problem:

(OP) Minimize J;(p) (or J,(p)) subject to pe PR.

Result 3. Every optimizing sequence of decision change pre-
regimes {p(®), n=1,2,...), i.e.

Jy(p(™)y -» m:= min (J,(p), pe PR}
as n —» oo, contains a subsequence {p(k), m= 1,2,...} which
converges to an optimal decision change pre-regime
Po:

P(k) =™ Po as k —>oo , Ji(pg)= m.
In practice this result allows us to orient our decision to
an optimal one and to find an approximate solution.
Let us omit the mathematical proof of Results 1-3, because
it needs much more than one page.

CONCLUSION REMARK. The present paper summarizes a
qualitative study of the problem. In practice, especially
if we confine ourselves to some finite sets Sgo and S the
technlque applied facilitates the analysis of simu atlon
and gaming process to obtain, on the one hand, the complete
information about possible decision change pre-regimes, and
on the other hand, an optimal one.
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