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ARSTRACT
With the continuing rise of the complexity of objects, it
becomes more and more inportant and wrgent to study the
complexity of systems. However we still feel difficult in

treating large scale and complex systems in  technique be-—
cause of the high order, multiloop and nonlinerity. In the
light of synergetics, & new method of structure analysis is
devel oped. It may have not only the theoritical, but alsc
the practical meanings in the parameter estimations, system
optimization, model simplification, dominant loop determina-—
tion, policy tests, etc. ’

THE FROBLEM

On principle system dynamics can be used to deal with a lot
of relatively complex problems. It has achieved great succe-
sses in the fields of enterprise mansgement, city planning,
global development, etc. However, the traditional method of
system dynamice has some limitations both in  theory and
practice. It excessively rely upon the personal knowledge
and experience in the proccess of modelling and upon  the
trail and error of computer simulations in analysis techni-
ques. Thus the whole analysis becomes indisorder and time-—
consuming and the key problems can not be effectively gras-—
ped. It may especially exhibit powerless when the system
under analysis possesses complex characteristics such  as
bifurcation, catastroph, chaos, etc. Therefor it is extream-
ly dimportant to explor a new approach more effectively to
analysis complex systems.

System dynamics and synergetics have their own strong points
respectively in dealing with the problems of complex system.
System dynamics is a kind of "structuwre form" method. It
lays stress on the relationships between loops and on the
effects of structures on behaviours. And synergetics i a
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ind of "function form" method. It places emphasis on  the
relationships betwesen variables and on the effects of para-
meters  on behaviours. MNow we combine the strong . points  of
both system dynamics and synergetics and produce a new
method of structure analysis to study the characteristics of
complex syetem.

We all krow that a complex system is usually combined of
ceveral subsystems which lay at different levels. The beha-
viow of a complex system ie determined by both the features
of the subsystems and the interactions between them. Accor—
ding to the view of the system grades, we first break the
eystem down into some individual feedback loops, next deter-—
mine the effective intensity for esach loop by calculating
their loop polarities, loop gains, loop eigenvalues and
their distributions of the linear parts. Without simulation
and approsmation,; the new method can supply the exhausive
information of complex systems including basic behaviour
modes, dominant loops, key points of behaviour changes,
leverage points of policies, etc.

STRUCTURE ANALYSIE

The approach of structure analysis mainly contains £ o
relative parts: methematical description, boundary property,
loop polarity and loop gain, and lcoop eigenvalues and their
diztributions.

1. Methematical Description

According to the characteristics of system dynamics model,
the following equations can be dirawn out:
db/dt=F¥R, R=F (A) , A=G{A,L) 1)
where dL/dt stands for the vector of net rates, R forr  the
vector of rates, A for the vector of auxiliaries, L for the
vector of =cstates, P for the transmition matrix {normally
constant), F and G respectively for the vector functions of
relative variables. Acturally the vector functions should
involve exogerncus variables and control parameters. They are
not included in equations (1), because enviroment factors
almost have nothing to do with the inherent features of
loops. In addition, for the convenience of exprision the
time variable is also not put in. From equation (1), after
some proper arrangements, the partial derivative of vector
dL/dt with respect to the transformed state vector L is
calculated as follows:
2idL/dt) QLT =F*F /dAT ¥ (1-0G/d AT BT = (L) (2)

where I stands for unit matrix and the inverse exists,
otherwise the system would degenerate intc an open form.
The system matrix of W(L) reflects the elasticity of states.
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Wi,i s=stands for the elasticity of state i with respect to
state j. Clearly, the factors of the sensitivity are the
functions of states and time, usually not constants except
for linear systems. Further more what in the hrackets of (9)
ie & diagonal matrix if the elements of auxiliary vector A
are ranked by the rule:
ARi=Ei(Ai+l...Am,L1...LnY, i=l...m (2D

where m and n are the numbers of auxiliraries and states
respectively.

2. Boundary Froperty

A complex system always contains some positive loops  and
some negative loops. These two kinds of loops connected and
interacted each other. When positive loops are dominant, the
system becomes boundless. Otherwise, when negative loops are
dominant, the system becomes bounded. Lyapunov direct method
is usually used to determine the boundary property of nonli-
near systems. That is, & constant positive function of
VIL,t) is first definited. And then the rate of VIL,t) is
calcul ated. If {dV/dt) 30, the system becomes boundless. And
if (dV/dt) <0, the system bhecomes bounded.

flthough some of approaches, such as Lyapunov index, fractal
dimension and so on, can he used for studying complex fea-—
twres of systems, & very simple and direct method carn he
introduced to do the same task for a bounded ststem. Actual-—
ly & bounded nonlinear system, an unacvtonomous system or a
more than three-ordered autonomous system, may give rise to
& 1limit circle behaviowr whern all the equiliblium points of
the bounded system become unstatakle, because the trajectory
of  the system can neither stop at some equiliblium points
nor go sc far as to exceed the system boundary. Further
more, under some conditions the limit circle may lose its
stability and the behaviours of hifurcation and chaos may
SPpEar .

3.'Laup Folarity and Loop Bain

The definitions about loop gains and loop polarities are
given below:

Def.l: A loop invelving one state variable is called a one—
stated loop; Gi=Wi,i is its loop gain, and SIGNIGL) is its
loop polarity.

Def.2: A loop involving two state variahle is called a two-
stated loop; Gi,j=Wi,j*Wi,i is its loop gain, and SIGN(Gi, i)
is its loop polarity.

By the same way n—stated loop gain and loop polarity can  be

5
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definited. All the definitions are identical with the common
uesed cencepts. Loop polarity reflects the developing direc-
tion of loop behaviours. positive polarity means growth and
negative polarity means being attracted. Loop gain reflects
the effective intensity of loops. The bigger the loop gain,
the stronger the effect of the loop to the system.

4. Loop Eigenvalues and their Distributions

Loop eigenvalues concern the linearlization in a small aera
of the equilibrium points of the system. In equations (1) we
take dL/dt=0, then

F®F (Ae) =0, A=G(Ae,Le), wi{lLe)=constant (4)
where Le and Ae stand for the state vactor and auxiliarity
vactor at the equiliblium points respectively.

Clearly, For an one—stated loop the loop eigenvalue is
equivalent to its loop gain. - For an n—-state the loop the
loop eigenvalue equation can be written as:

(LED" =G (n) =0 : ()
where G(n) stands for the loop gain of the n—stated loop.
Positive real part of loop eigenvalues contributes growing
mades; negative real part contributes attractive modess and
imaginary part is responsible for oscillatory modes. For a
well-structured system different loop gigenvalues may appear
in a same loop. Then various complex behaviour modes take
place including the shift of loop polarities, catastrophic
changes, chaos and self-orgninations, etc. '

In addition, loop gains determine not only loop eigenvalues
but also system eigenvalues and their distributions. Obviou~
sely for an one—ordered system the system eigenvalue 1is
identical with the loop eigenvalue. For a two-~ordered system
the system eigenvalue equation is:

{(E-G1)*(E-G2)-B1,2 =0 . {(6)
where E stands for the system eigenvalue. For a three—
ordered system we get: ,

E(E—Gi)—EB(E)—.Z Gi , j(E-Bk) =0, i<j, ixkxj (7)
By the same way we c?ﬂ”get the system eigenvalue eguations
for higher order systems. In practice, it is convenient that
a complesx system is first decomposed into some lower order
subsystems on the principle of system grades, and then the
pigenvalue discriptions of the system can be analysised.

APFLICATION

Now we consider a simplified model of the economic long wave
{see Appendix). It was developed by J. D. Sterman and aws
analysised by E. Mosekilde, etc. Here we study it by & new
way of structure analysis. Figure 1. shows its system
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dynamics flow diagram. This is a typical nonlinear system
with two levele and two table functions. First of all, we
write down the methematical exprision of the model:

rLl/dt dpc/dt 1 -1 O [CAR (8a)
e TR
diL2sd dunc/dt -1 O 1] |OR
CAR FR-DFG (8b)
[bR J= FC/ALC
OR FC/ALC*MDF
[F_'R. ], [F'C/CDR'*f 1(z) (8c)
MDF) ™ ($2(=z)
z={COR/FC)* (UQC/DDC+DFG) , (Bd)
where £1 and f2 are table functions (see Figyre 1.). The
system is bounded. In fact we note:
dPC/dt+dUlC/dt=FC/ALC* (f2-1) , 0L F2¢4 (N
The following function of V is taken as a Lyaponov function:
Vv=0.5% (fb-1) *PC’/ALC’}D.S*(dPC/dt+dUDC/dt?;O (10

where fb stands for the boundary of f2. Then the rate of V
becomes:

dv/dt=(fb—1Y /ALC? *PC*[FC* (f1/COR-1/ALC) -DFG] (11
It can be seen from Figure 1. that if PC——3o, Then f1-—30.
In fact if PCgrows so big as to make f1<COR/ALC, the
coefficient sign of FC? becomes negative. BSo the tracks of
the system can not exceed a limit range at any time.

The partial derivative of dL./dt with respect of LT, that is
the matrix of W(L), can be calculated as follows:
Wi, 1=f1/COR~1/ALC-K1/FC* (UOC/DDC+DPG) (12)
Wl,2=k1/DDC
w2,1=f2/ALD—f1/CDR-CDR/FC*(UOC/DDC+DPG)*(k2/ALC—k1/CDR)
W2 ,2=COR/DDC* (k2/ALC~k1/COR)
where ki and k2 are the slopes of f1 and 2 respectively.
There are two one-stated loops and one two-stated loop
inductively in the system. Their loop gains and loop
polarities are:
Bi=W1,1, SIGN(Gi)=the polarity of the loop; {13)
G2=W2,2, SIBN(G2)=the polarity of the loop;
G1,2=W1,2%W2,1, SIGN(G1,2)=the polarity of the loop.
Obviousely the loop gains and loop polarities may vary with
the changes of states, table functions and parameters, and
the dominant loop may shift from one to anther under
diffrent conditions. The system prossesses an unit unnormal
equalibrium point:
FCe=DPG*LOR*ALC/ (ALC-COR) (14)
UDCe=DDC*DPG*COR/ {ALC—COR)
fle=fle=ze=1
At the equalibrium point, ki=1/4, k2=3, and WiLe)={Wei, i} is
a constant matrix. That is:

i
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Wel,1=0.73/COR-1/ALLC (13)
Wel,2=0.25/DDC )
Wel,1=—-2/ALC~0.75/C0OR
Wel,2=COR/DDCx* (Z/ALC-0. 25/C0R)
We can get the system eigenvalue equaticn:
FAE)=(E~G1)*(E-G2)~G1,2=E +h*E+c=0 (162
where
b=1/ALC-0.75/COR~-COR/DDC% (Z/ALC~0. 25/C0OR)
C=0,25/DDC* (0. 75/COR+2/ALE)

Now we first take

ALC=20, DDC=3, COR=6& (17}
The loop gains, loop polarities and loop eigenvalues at the
equalibrium point can be calculated as follows:

Gl=LEl=-0.008<0 (18)

G2=LE2=0. 28650

G1,2=-0,012<0

LE1,2=% 0.11i
And the two system eigenvalues are:

E=0.0421+0,187i {19)
The equalibrium point is unsatable. The tracks of states
show limit circle behaviour because the system is bounded.
Frome this espriment we can conclude the second one—-stated
loop is dominant. Its loop gain is much bigger than the
others.

Next we take COR=4 and the other parameters remain their
original values as cbviouse. We can get:

Gl=LE1=0,0125>0 (20)

G2=LE2=0, 1790

G1,2=-0.01350

LEL,2=40.1161
And the two system eigenvalues are:

E=-0.,019+0.2]
The equalibrium point is a stable focus. The tracks of
states may convergent to it in a spiral way. From this test
we can  know the two-stated loop is dominant, though the
polarity of the other two-stated loops is positive. The
conter—intuitive properties of complex systems appear here.
Fractically there existsa critical value of COR between 4
and 6 at which the behaviour of the system may bifurcate
from & damped oscilation to a limit circle. That means the
real partof the system eigenvalues of Re(E) changes from
negative into positive.

Further more we explor the chaotic property of the system
behaviour. Suppose DFG (desired production of goods) has &
sinusocidal fluction instead of a constant:

DFG=1+AMF*COS (6. 283*TIME. K/FER) (21)
here FER is the period of the egenous excitation and AMF is
the amplitude of the excitation. At the equlibrium point the
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system matrix of WS{le can be rewrited as follows:

Wel,tl Wel,2 -1 Q (22)
WS Le)=|We2,1 WeZ2,2 1 0 .
Q 0 ) 1
Q Q) 59 Q

where Le=[FC UOC DFG RDFG 1 , SS=—(6.283/PER? , and RDFEG
stands for the rate of DFG. Then we can get the system
eigenvalue equation:
FS(E)=[E‘+(6.283/PERf 1#F (E) =0 (23

That means the eigenvalues of the sinusoidal excitated
system remain the original zigenvalues and at the same time
increase a pair of new net imaginary gigenvalues of
+6. 283 /PERL. I+ the equalibrium'point loses its stability
under some conditions, the behaviour of bifurcation and
chaocs may occur in this bounded system (see E. Mosekilde
1986) . .

CONCLUSION

Trditional system dynamics has some 1imitations in dealing
with comllex problems of systems. it iz ineffective and .
time—-consuming during the analysis because of its excessive
dependence Upon personal Lnowledge and the trail and error
in computer simulations. a new approach of structuwre
analysis is developed in this paper. It di-raws the cream from
system dynamics and synergetics. By the view aof system
grades & complex system can been broken down into a series
of one-stated 100pS, two—-stated loops, etc. Then the
contributions of each 1loop to the system can been
comprehensively analysised by calculating the loop gains,
loop polarities, and loop eigenvalues and - their
distribution. The new approach can supply an effective way
to study the structural origins of behaviow in complex
systems, to determine the leverage points in policy tests,
and also do good to model simplification. 1t need not
simulations and is low cost. The practical tests show that
it is an uesful tool to explor the complexities of systems.

REFERENCES

Brons, M. and J. Sturis. 1991. Local and Global Rifuwcations
in a Model of the Economic Long Wave. System Dynamics
Reviw, Vol.7, No.1, Winter:41-60.

Forrester, N. B. 1987. Theory and application aof BSystem
Dynamics. Bei jing: New Times. 112-122. '

Hahen, H. 1989. Advanced Synergetics. Eei jing: Science (in
Chinese).

- 224 -




Mosekilde, E. and 5. Fasmussen. 1987. Rifurcations and
Chadtic Behaviour in & Simple Model of the Economic Long
Wave. Thory and Application of System Dynamics. Reijing:
Mew Times. I6&7-3B3.

Steman, J. D. 1989. Deterministic Chacs in an Experimental
Economic System. Jowrnal of Economic  Behaviour and
Organizaton. 12:1-28.

Thamsen J. 8., E. Mosekilde and J. D. Sterman. 1990, Mode—
Locking and Chaos in a Periodically Driven Model of the
Economic Lang wave. Froceedings of System Dynamics
Conference. 3:1137-1151.

Tora, M. and J. Aracil. 1988. Qualitative Analisis of System
Dynamics EcologicalModels. Bystem Dyrnamics Review 4:56-80.

AFFENDIX

The complete DYNAMO program for the simplified model of the
economic long wave:

¥ ONE SECTOR HONDRATIEFF MODEL
L PC.KE=FPC.J+(DT) (CAR. JE-DR. JkK)
M FE=FCI

N FCI={(DFG*COR*ALLC) / (ALC-COR)
R DR.EL=FC.E/ALC

C ALC=20 vyears

R CAR.FL=FR.k-DFG

C DFG=1.0 unit/year

L UOC. K=U0C.J+{(DT) (OR. J~-CAR. JK)

N UOC=(FCI*DDC)/ALC

R OR.EL=(PC.E/ALC) #*MDF. K

A FO.E=FC.EK/COR

C COR=6 years

A FR.E=FO.E*CUF.K

A CUF.E=TABHL (CUFT,DF.K/F0.K,0,2,0.2)

T CUFT=0/0.2/0.4/0.6/0.8/1/1.1/71.15/1.18/1.19/1.2
A DF.E=(UOC.E/DDC) +DFG

C DDC=3 years

A MDF.H=TABRHL (MDFT,DF.K/FD.K,0,2,0.2)

T MDPT=0/0.1/0.2/0.3/Q0.5/1/2/3/3.5/7.57

SFEC DT=0.2
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