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Abstract

This tutorial gives a survey of strategic issues in the statistical design and analysis of experiments
with System Dynamics models. These models may be either deterministic or random. The strategic
issues include what-if amalysis and optimization. The analysis uses regression (meta)models and
Least Squares. The design uses classical experimental designs such as 2*F factorials, which are
efficient and effective. If there are very many inputs, then special techniques such as group
screening and sequential bifurcation are useful. Some applications are discussed briefly.

Introduction

System Dynamics uses the technique of simulation to ’solve’ its models. Simulation is a mathemat-
ical technique that is very popular because of its flexibility, simplicity, and realism. By definition,
simulation involves experimentation, namely with the model of a real system. Consequently it
requires on appropriate design and analysis. For real systems, mathematical statistics has been
applied since the 1930s: Sir Ronald Fisher focussed on agricultural experiments in the 1930s;-
George Box concentrated on chemical experimentation, since the 1950s; see Box and Draper (1987).
My first book (Kleijnen, 1974/1975) covered both the 'tactical’ and *strategic’ issues of experiments
with random, :and deterministic simulation models. The term tactical was introduced into simulation
by Conway (1963); it refers to the issues of runlength and variance reduction; which arise only in
random simulations such as System Dynamics studies of the effects of information quality; see the
survey in Kleijnen (1980, pp. 137-143). Strategic questions are: which combinations of input
variables should be simulated, and how can the resulting output be analyzed? Obviously strategic
issues arise in both random and deterministic simulations. Mathematical statistics can be applied to
solve ‘these questions, also in deterministic simulation; see Kleijnen (1987, 1990), and Sacks et al.
(1989). This contribution focusses on these strategic issues in simulation experiments with System
Dynamics models. '

Strategic issues are also addressed under.names like model validation, what-if analysis, goal
seeking, and optimization; see Table 1, reproduced from Kleijnen (1987, p. 136). We shall retum to
this table. -
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Table 1: Terminology

Computer program  System Dynamics Regression model User view
' model
Output Response Dependent variable y Result
Input ‘ Parameter Independent variable x  Environment
Variable
Enumeration Continuous Validation s
‘ Risk Analysis
Function Discrete Controllable
Optimization
Scenario Binary _
Goal output /
(control)
Satisfy (what-if)
Behavioral
relationship

Regression Metamodels

Before systems analysts start experimenting with a System Dynamics model, they have accumulated
prior knowledge about the real system: they may have observed the real system, tried different
System Dynamics models, debugged the final simulation program, and so on. This tentative
knowledge is formalized in a regression or Analysis of Variance (ANOVA) model. ANOVA models
are presented in the basic statistical theory on the design of experiments: Sums of Squares (SSs) are
compared through the F test to detect significant main effects and interactions. The simplest
ANOVA models can be easily translated into regression models; see Kleijnen (1987, pp. 263-293).
Because regression analysis is more familiar than ANOVA is, we shall use regression terminology
henceforth. '

So prior knowledge is formalized in a tentative regression model. In other words, this model
must be tested later on to check its validity as we shall see. The regression model specifies which
inputs seem important, which interactions among these inputs seem important, and which scaling
seems appropriate. We shall discuss these items next.

Table 1 showed that *inputs’ are not only parameters and variables but may also be ’behavioral
relationships’. Parameters are quantities that are not directly observable so they must be estimated.
Changing a behavioral relationship may mean that a module of the System Dynamics model is
replaced by a different module. In the regression model such a qualitative change is represented by
one or more binary (0,1) variables. "Inputs’ are called *factors’ in experimental design terminology.
*Interaction’ means that the effect of a factor depends on the values (or ’levels)’ of another factor:
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where y is the response of a simulation run; g is the overall or grand mean; g is the main or first-
order effect of factor j; B, is the two-factor interaction between the factors j and g (g = j): B, is
the quadratic effect of factor j j; B is the three-factor interaction among the factors j, g, and h
(h#:g+j) and so on; e denotes ’ﬁftmg errors’ or noise. Under certain mathematical conditions the
*response curve’ in Eq. (1) is a Taylor series expansion of the System Dynamics model y(x,,...,Xy)-
Unfortunately these conditions do not hold in System Dynamics. Therefore we propose to start with
an initial model that excludes interactions among three or more factors: such high-order interactions
are popular in ANOVA but they are hard to interpret. The purpose of the regression model is to
guide the design of the simulation experiment and to interpret the resulting simulation data; a
regression model without high-order interactions suffices, as we observed repeatedly in practice.

The regression variables x in Eq. (1) may be transformations of the original System Dynamics
parameters and variables; for example, X, may equal log(z,) where z, denotes the original System
Dynamics input. Scaling is also important: if the lowest value of z, corresponds with x; = -1 and its
highest value corresponds with x; = +1, then (3, measures the relative importance of factor 1 when
that factor ranges over the experimental area.

In optimization through Response Surface Methodology (RSM) we explore response curves
locally. The local regression model is the first-order model:

y=70+27573+e’ @

where the importance of factor j at Z z» the midpoint of the local experiment, is measured by-y z,
with 2 = Z'_l zu/n = (L+H)2 ‘where L <z < H with ‘local experimental area
L, H]x...X[L H] z denotes the value of factor' j in Simulation run or observation i. See
Bettonvil and Klegnen (f990), and Box and Draper (1987).

In all experiments, analysts use models such as Eq. (1), explicitly or implicitly. For example, if
they change one factor at a time (as for example, Wolstenholme, 1990 does), then (implicitly) they
assume that all interactions Byr are zero. Of course it is better to make the regression
model explicit and to find a desxgn ﬁmt fits that model, as we shall see next. But first note that we
call the regression model a metamodel because it models the input/output behavior of the underlying
System Dynam1cs model; that model is treated as a black box in our approach.

Experimental Design

Based on a tentative regression metamodel we select an experimental design. The design matrix D
= (d;) specifies the n combinations of the k factors that are to be simulated. (In multi-stage
experimentation such as RSM this set of n combinations is followed by a next set.) Classical
statistical theory gives designs that are ’efficient’ and ‘effective’. Efficiency means that the number
of factor combinations or simulation runs is 'small’. Suppose there are Q effects in the regression
metamodel. The number of runs should then satisfy the condition n > Q; for example, we need k
+ 1 runs if there are no interactions at all. Table 2 shows that we may obsefve one base run (say)
(-1, -1,..., -1), and then change one factor at a time: (+1, -1,..., -1), (-1, +1, 1),

(-1,..., -1, +1). To estimate the effects B’ = (BysB,s---,B) We fit a curve to the su:nulatlon data
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(X,y) where the first-order model implies X=(1,D); 1 denotes a vector of n ones. The classic fitting
criterion is Least Squares. This criterion yields the effects estimator.

Table 2: Two designs for three factors.
(- denotes -1; + denotes +1)

One at a 2*! Design
time

Rlln dl d2 dJ dl dz d3

W=
[

+

t
+ 4
+

[

b=xX"XYy. 3

Now consider the classic fractional factorial 2*' design of Table 2. It is easy to check that the
corresponding X is orthogonal. Hence Eq. (3) reduces to the scalar expression

B =Y" x-vm  G=0,1,...0. ' @

How can we choose between the two designs of Table 2? Classical theory assumes that the
fitting errors e are white noise: e is normally and independently distributed with zero mean and
constant variance (say) ¢2. Then Eq. (3) yields the variance-covariance matrix

cov(B) = FAX'X) . &)

It can be proved that an orthogonal matrix X is ’optimal’. Actually, there are several optimality
criteria; see Federov (1972) and Kleijnen (1987, p. 335). An orthogonal X minimizes var(f? ), the
elements on the main diagonal of Eq.(5). There are straightforward procedures for denvmg *good’
design matrices, in case n equals 2*? with (p=0,1...); for other n values there are tables and
software; see Box and Draper (1987), and Kleijnen (1987).

So the classical designs are efficient under the white noise assumption (recent research uses
alternative assumptions; see Sacks et al., 1989). Moreover, these designs are effective: they permit
the estimation of interactions. If we allow for two-factor interactions, then the number of effects Q
increases to 1 + k + k(k-1)/2. If k is small, we may simulate n > Q combinations; for example,
ifk = § then a 2%! design is suitable. (If k is large, we may hope that some factors will turn out to
give nonsignificant main effects; we may assume that factors without main effects have no two-
factor interactions either; there are designs with n = 2k that yield unbiased estimators for main
effects; see Kleijnen, 1987, pp. 303-309, and Bettonvil and Kleijnen, 1990). If the factors are
quantitative, then a second-order regression model includes k' quadratic effects. In such a model, n
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must increase and more than two levels per factor must be simulated: Box and Draper (1987) and
Kleijnen (1987) give such RSM designs.

Screening

For didactic reasons we discuss ’screening’ designs after classical experimental designs. In
practice, most System Dynamics models have a great many factors that may be important; of course
the analysts assume that only a few factors are really important: principle of parsimony. So in the
beginning of a System Dynamics study it is necessary to search for the few really important factors
among the many conceivably important factors. Classical textbooks do not discuss such screening
situations, because in real-life experiments it is impossible to control (say) a hundred factors. In
simulation, however, we perfectly control all inputs and we indeed use models with many inputs.

One approach is group screening, introduced in the early 1960s by Watson, Jacoby and
Harrison, Li, and Patel. This technique aggregates the many individual factors into a few group
factors. Some simulation applications can be found in Kleijnen (1987, p. 327); these applications
are not System Dynamics models but quening simulations. Recently Bettonvil (1990) further
developed group screening into sequential bifurcation, which is a very efficient technique that
accounts for white noise and interactions. He applied this technique to an ecological model with
nearly 300 factors. Also see Bettonvil and Kleijnen (1992).

Another approach uses random combinations of input values. These designs were discussed in
Technometrics back in 1959; also see Kleijnen (1990, pp- 321-323). We do not further discuss
these designs because they are less efficient than group screening is.

More efficient but complicated approaches do not treat the simulation model as a black box;
they use analytical differential analysis; see Ho and Cao (1991) and McRae (1989).

Regression Analysis: Some Technicalities

Eq. (3) gave the Ordinary Least Squares (OLS) estimator B. In deterministic System Dynamics
models that estimator may suffice, although Sacks et al. (1989) give a better estimator if the white
noise assumption is dropped and is replaced by a stationary covariance assumption. In random
models the classic assumptions seldom hold. If the response variances differ with the inputs (as the
response means do), then Weighted Least Squares (WLS) is better. If common random numbers
drive the various factor combinations, then Generalized Least Squares (GLS) is best. See Kleijnen
(1987, pp. 161-175).

Once the regression model is calibrated (that is, the parameters ( are estimated), the meta-
model’s’ validity must be tested. For deterministic System Dynamics models we propose cross
validation: delete factor combination i (that is, delete Xi.’)'i); reestimate g from the remaining
simulation data (X_,y.); predict the deleted System Dynamics response y; through the reestimated
regression model '

@, = 3_* x); ’eyeball’ the relative prediction errors 9,/y,: are these errors acceptable to the user?

In random simulation we prefer Rao’s adjusted lack-of-fit F-test based on GLS: the estimated
response variances and covariances are compared with the residuals (¢ - y). If, however, the
System Dynamics responses are not normally distributed, then cross validation based on OLS is
better. See Kleijnen (1992a).

In practice, System Dynamics models generate time series for several responses of interest; for
example, inventory paths for different products. These time series can be characterized by their
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averages and quantiles; for example, we may estimate which value is not exceeded 90% of the
time. Classical experiment design theory concentrates on a single response variable (denoted by y in
this paper). In practice we use these designs to specify simulation runs, and we observe several
responses per factor combination. To analyze these responses we can apply regression models per
response; more sophisticated multivariate regression analysis does not seem to be worthwhile in
practice. See Kleijnen (1987) and (1992b).

Sensitivity analysis, which we emphasize in this paper, should be distinguished from Risk
Analysis. The latter type of analysis is an interesting combination of deterministic System Dynamics
models and Monte Carlo sampling. System Dynamics models are often deterministic. These models
depend on a number of inputs that are unknown. Therefore the user may specify a prior distribution
of possible values, such as a normal or a uniform distribution. The computer samples values from
that distribution, and generates output values, which are summarized in an output distribution. See
Tman and Helton (1988). ' '

Some applications

One case study concerns a set of deterministic ecological simulation models that resemble
System Dynamics models (non-linear difference equations). These models require sensitivity
analysis to support the Dutch government’s decision making. Results for a model of the ’'gree-
nhouse’ effect are given in Kleijnen, van Ham and Rotmans (1992).

Another case study concerns a Flexible Manufacturing System (FMS). Input to the deterministic
simulation is the ’machine mix’, that is, the number of machines of type i with i = 1,...,4.
Intuitively selected combinations of these four inputs give inferior results when compared with a
classical design. The throughput of the simulation is analyzed through two different regression
metamodels. These models are validated. A regression model with only two inputs but including
their interaction, gives valid predictions and sound explanations; see Kleijnen and Standridge
(1988).

Applications of our approach are numerous in discrete-event simulation such as queuing
simulation. An application is a decision support system (DSS) for production planning, developed
for a Dutch company. To evaluate this DSS, a discrete-event simulation model is built. The DSS
has 15 controllable variables that are to be optimized. The effects of these 15 variables are
investigated, using a sequence of classical designs. Originally, 34 response variables were
distinguished. These 34 variables, however, can be reduced to one criterion variable, namely
productive machine hours, that is to be maximized, and one commercial variable measuring lead
times, that must satisfy a certain side-condition. For this optimization problem the Steepest Ascent
technique is applied to the experimental design outcomes. See Kleijnen (1992b).

Conclusions

Experimental design and regression amalysis are statistical techniques that have been widely
applied in the design and analysis of data obtained by real life experimentation and observation. In
simulation, these techniques have gained popularity: a number of case studies have been published.
The techniques need certain adaptations to account for the peculiarities of deterministic and random
simulations. Their application to System Dynamics-is straightforward, we claim.
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