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Abstract

We consider cases where reality is best described by a continuous model, and where data are sampled at
discrete points in time. Then an exact transformation of the continuous model into a discrete one, or vice
versa, is typically very complicated. Simplified transformations might produce great errors if the samp-
ling interval for the time series is approaching natural periods or time constants-of the system being
modelled. For such problematic cases we discuss implications for system dynamics, traditional discrete
model econometrics, and Bayesian statistical methods.

1. Introduction

The transformation of a continuous time model into a discrete one, or the transformation of a discrete
time model into a continuous one, is normally very complicated. However, such transformations typi-
cally have to be made, somehow, for the purpose of parameter estimation or model testing using either
system dynamics or traditional statistical procedures:

- System dynamics (and other methods using continuous simulation models) often make use of
parameter estimates that have to be transformed from discrete time econometric models.

- Traditional discrete time econometric models typically rely on continuous time economic
theory and restrictions on parameters.

- Bayesian statistical methods using discrete time observations typically rely on continuous time
theory and prior information about parameters.

The purpose of this paper is to indicate what problems might arise when using the three methods without
making proper transformations. We discuss implications for practical work and ways to reduce the pro-
blems. The paper relies on theory developed after the mid 1960°s, see Bergstrom (1976) for a collection
of central papesS. Our main contribution is to supply a business-cycle example, a phenomenon frequently
studied in economics and in system dynamics, and to compare three different approximative
transformations. '

2. When are transformations needed?

The transformations above are only needed if reality is best represented by a continuous model, while the
time series data are discrete. Throughout this paper we assume that this is the case; a choice that also
seems to represent most cases, see discussions in Koopmans (1950), Forrester (1961) (p.64-65), in Gan-
dolfo (1981) (p.4-7) who categorizes main arguments and give numerous references, and in Richardson
(1991).

Transformations are avoided in system dynamics models if the continuous model is based solely on prior
information, or if continuous models are used directly in parameter calibration. However, if one wants to
use parameter estimates from discrete time models, or want to test relationships in a traditional statistical
- fashion (make inference), transformations seems to be needed, see Gandolfo (1981) (p.66). Continuous
discrete Kalman filtering might offer an alternative, see e.g. Jazwinsky (1970) or Maybeck (1982).
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For discrete time econometric models, the continuous time model is the medium through which eco-
nomic theory and a priori restrictions on parameters are introduced. If discrete time models do not make
use of this type of prior information, transformations are not needed. However, the lack of comprehensive
time series data in social systems typically imply that a priori restrictions are needed to save degrees of
freedom. Furthermore, since numerous models can be fit to historical time series, direct observations of
decision making behaviour is needed to discriminate between theories. In this case transformations are
needed.

3. The exact transformation of a linear system

Assume that reality can be described by the following linear, continuous differential equation:

dx .
3 = Ax+Bu @

where A and B are matrices containing the model parameters, x is a vector of state variables, u represents
exogenous inputs, and we have ignored random disturbances. The solution for x(t) is given by:

1
&

t
x(D) = _CAIX(to) + jeA(t'T)Bu(t)dt 1))
0 .

We now let x; represent the observation of x(t) at time t, and we use equation 2 to predict x¢4.1 from the
previous measurement x¢. To ease the exposition we will not only assume that u(t) is integrable but also
constant between measurement times. The time interval between measurements is denoted by & and I
denotes the identity matrix.

X+l = eASx[ - A'I(I - eAS)But 3

Setting the matrices @=eAd and A=-A"1(1 - ®)B, the equation reads:
Xi+1 = Dxg+ Aug @

To better see the relationship between the continuous model in equation 1 and the discrete model in
equations 3 and 4, we write the matrix ¢Ad by its Taylor expansion:

¢=’6A8=I+A8+%‘A282+'3' ®

From equation 5 we see that each element ¢j; of the matrix & in principle is a complicated function of
all parameters ajj of the matrix A. This is why the transformation between continuous models and
discrete ones is so complicated.

Equation 5 also indicates that the problem vanishes if & tends towards zero. Then @ is simply given by
1+Ad. For what values of & this approximation is acceptable, depends on the eigenvalues of A. This is
most easily iltustrated by the one-dimensional case where aj1=-1/T; a first order negative feedback loop
with a time constant T. For this case equation 5 can be written:

' 2
on=1-& 43+ ®
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In this case we see that 8 must be sufficiently shorter than the time constant T for the sim'ple first order
approximation to be acceptable. More advanced approximations will depend on higher orders of  (or 8/T)
than 2, see Gandolfo (1981).

4. A continuous time business cycle model.

To illustrate we use a simple version of a business-cycle model proposed by Metzler (1941) and elabo-
rated on by Mass (1975), Forrester (1976), and Forrester (1982).

Aggregate inventories i increases by production ¢ and are depleted by shipments s of consumer and
investment goods. Shipments s are exogenous. '

fi_g-s M

Desired production is set equal to shipments s plus inventory adjustments (as-i)/7;, where desired inven-
tory is the product of shipments s and normal inventory coverage a. The strength of the adjustment is
given by the inventory adjustment time 1; .

8o (s +@s-idi -a)fg ®
Production follows desired production after an adjustment delay 7,. This delay combines time used to
perceive changes in inventories and shipments, to adjust plans, to hire or fire workers, to train workers,
and to organize overtime. Since we are dealing with an aggregate model, this time delay will also capture
delays incurred by intra-industry deliveries.

Written in the format of equation 1 the business cycle model can be written:

-1

di

—_— 0 1 .

$=[__L_ _L]m+1 a s ©)
al Titg  1q E(H‘E_i)

The eigenvzi"i':ues1 for the model shows that it produces cycles when ; < 41, . The periodicity is given by

T=2m 7i7g. Parameter values of 7; =0.5 year and 74 = 1.0 year, give a period of 4.4 years, which is a
quite typical length between business cycle peaks.

1 Eigenvalues are: -L:‘r:l LZ - 4
2152 N2 g
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5. An exact discrete time version of the b-¢c model

Equations 3 and 4 shows the general expression for the discrete time model. Below we have derived
explicit expressions for the parameters ¢ and 4; for the business cycle model. :

"5{— 8
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= 1 a
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Obviously, even the transformation of a second order model is very complicated. Using an exact trans-
formation, it is very difficult to test theory from the continuous model, and to utilize prior information

about parameters. The parameters from the continuous model enters the discrete model in a highty non-
linear fashion.

- 488 -




6. Simplified discrete time versions of the b-c model.

We consider three simplifications of the transformation to a discrete business cycle model. We begin with
a first order Taylor expansion ®=I+AJ and enter the parameters for the business cycle model into equati-
on 4. This is the first order Euler method usually used for simulation in Dynamo and Stella. The general
equation for a linear model is:

X+ 1=Xt+0(Ax+Bup) 10)

The business cycle model reads:

it41 1 8 it 3 ‘
= .8 3 +ls  alst an
Qe+ Titq g altt_i)

A second simplification is to make an exact transformation of the continuous model equation by
equation.

xi,t+1 = M%< 2”11 - eaﬁ&)(Z_ainj,ﬁ%‘,bkuk,t) 12
JA

We transform the equation for di/dt treating the variable ¢ as an exogenous variable, and the equation for
dq/dr treating i as an exogenous variable. As with the true exogenous variable s, we assume that ¢ and i
are constant between the discrete time points.

it+1 1 5 ig 3
[ :' = 11.({8/1(!) -8/7, |: ':I + a St (13)
at+1 T e” 1 g (l-e*%q)(Ha)

The equation by equation transformation is the philosophy usually followed in practical econometrics.
The equation for ir maintains the definition of inventory change (the time step § is typically set equal

to.1 per deﬁniﬁbn). The equation for g; represents a linearized Koyck lag, where e'&fq is the lag factor.

Actually, the Euler methed is also an equation by equation transformation, although simplified with a lag
factor equal to -&/'74.

The third simplification of the transformation takes notice of the difference between rates (flows) and
levels (states, stocks or instantaneous variables). The discrete equation is written as;

1
Xp4 1=Xp+8(A (x4 1430+ Buy) a4)
for the case when u(t) is constant between measurement times, see e.g. Gandolfo (1981) p-85. Compared

to the first order Euler approximation, x¢ on the right hand side is replaced by the average value

1 . . . .
E(Xt+1+xt) between time points t and t+1. This makes sense because rates are functions of levels, and

change as the levels change. The average rate over a time period gives a better prediction of next period’s
level than the rate at the beginning of the period. Note that the third method introduces simultaneity in
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- that X¢+] appears on the right hand side of the equation. Econometric methods tackle this simultaneity
directlyz. For our comparison of methods we solve for xy41 and insert parameters from the business
cycle model:

8 . )
xp+1=( - 3A) 1 @ +5A)x; + Buy) s
which gives:
. 52 (8/2)2 . 202
t+1 1+ - - 8 it Tilg
1| Mg g , Hex .
@] P S 1.2 @2 Dlep? 1.2
Titq g Tilg Titq  1q W
2
where D=1+§L2-+ @2— (16)
i B

To summarize, in all four transformations we have assumed that exogenous variables u(t) are constant
between discrete time points. For the Euler and the Equation by equation methods, we have assumed that
also endogenous rates are constant between discrete time point; they are treated as exogegious variables.
The Exact transformation fully accounts for rates being functions of levels, while the Raté approximation
picks up the first order effect of levels on rates.

Note that with the exception of exogenous variables u(t), we have assumed that all level variables are
measured at the discrete time points, e.g. inventories in our business cycle model could be reported at
year-ends. We will stick to this assumption throughout the paper. However, we acknowledge that there
are important exceptions. Level variables might be reported by their average values over the measurement
interval. In particular this is likely to be the case for level variables that appear directly as rates in other
parts of the model. Production in the business cycle model is an example (in this paper we assume that it
is measured instantaneously). Gandolfo (1981) shows how the mixed case with both level and rate
variables on the left-hand side (instantaneous and flow measurements) can be treated by integrating the
variables over the measurement interval. This reatment complicates the Rate approximation method
because error terms will no longer be serially uncorrelated. Gandolfo also describes a transformation to
avoid this correlation.

7. Numerical assessment of the simplifications

Before we enter numbers into the equations above, we repeat the main purposes of the transformations.
Either theory and prior information about parameters are transformed from a continuous model into a
discrete one, or parameter estimates from discrete models are transformed to be used in continuous mo-
dels. If we assume that the continuous model is an exact representation of reality, we note that unbiased
estimators yield the same discrete model parameters as the Exact transformation.

We use the same parameter values as earlier in the paper: 7j=0.5, 74=1.0, and 2=0.2, which imply
business-cycles with a period of 4.44 years. The correct discrete model parameters, @;j and 4;, using the
Exact transformation are compared to the corresponding parameters for the simplified methods.

2 E.g. by using a three-stage least squares. The error terms will be serially uncorrelated only if all

the variables are measured at the same point in time, see Gandolfo (1981).
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First we compare parameter values for the case when yearly data on inventories and production are avail-
able, 8=1, see table 1. Deviations from the correct parameters are considerable. Of the three alternatives,
the Rate adjustment is clearly the best. Rate adjustment yields parameters which on average differ from
the correct parameters by 34 percent (¢22 is not included due to wrong sign). Correspondingly, the Euler
method gives an average deviation of 129 percent and the Equation by equation method leads to a 115
percent average deviation. '

Table 1: Parameter values of discrete models, &=1.

911 012 921 22 Al A2
Exact 0,371 0,444 -0,889 -0,073 -0,319 1,251
Euler 1,000 1,000 -2,000 0,000 -1,000 1,400
Equation by eqn. 1,000 1,000 -1,264 0,368 -1,000 0,885
Rate adjustment 0,500 0,500  -1,000 0,000 -0,600 0,950

Next, we compare parameters for the case with quarterly data, §=0.25, see table 2. Deviations from cor-
rect values are much smaller than in the case with yearly data. Still the Rate adjustment gives the best
results with an average deviation of 4.3 percent. Deviations for the Euler and the Equation by equation
methods are respectively 10.8 and 11.1 percent.

Table 2: Parameter values of discrete models, 6=0.25.

011 012 021 $22 Al A2
Exact 0,943 0217| -0433 0,726 0,205 0,360
Euler 1,000 0,250]  -0,500 0,750 -0,250 0,350
Equation by eqn. "1,000 0,250] -0442 0,779 0,250 0,310
Rate adjustment 0,946 0216] -0432 0,730 0,227 0,309

For monthly data, 8=1/12, average deviations become 1.5 percent for the Rate adjustment, and 3.0 per-
cent for the other two. Finally, we note that as § tends towards zero, all parameters converge towards the
correct values, as expected. '

8. Discussion and conclusions

The starting point for this paper has been cases where reality is best described by a continuous model, and
where data are sampled at discrete points in time. Then an exact transformation of the continuous model
into a discrete one, or vice versa, is typically very complicated. Simplified procedures produce great errors
if the period between data points is approaching natural periods or time constants of the system being
modelled. For such problematic cases we discuss implications for system dynamics, traditional discrete
model econometrics, and Bayesian statistical methods.

It has been argued that system dynamics models would benefit from more extensive use of formal stati-
stical methods. The above results introduce an important qualification to this claim. Parameter estimates
obtained by a discrete version of a continuous simulation model, could introduce serious biases in the
simulation model if an approximative transformation is used. Take the estimation of Tq from the para-
meter ¢22 as an example. Assume first that ¢29 has been estimated correctly with no bias. For the case
with yearly data, the Equation by equation method deems the negative parameter estimate implausible,
while the Euler method gives an estimate of 74 cqual to 0.93, only 7 percent below the correct value.
For the case with quarterly data, the Equation by equation method give an estimate of 74 of 0.78, while
the Euler method gives 0.91. Corresponding biases are found for estimates of 7; based on ¢ and esti-
mates of 74. For yearly data, the Euler method gives an estimate of 7; of 1.21, 142 percent above the
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correct value. For quarterly data, both methods gives an estimate of 7; of 0.63, 26 percent above the
correct value.

To conclude: The transformation biases, even for guarterly data, together with likely estimation biases
(e.g. short sample biases), are likely to be of comparable size to typical mistakes made when dealing
with prior data. Thus, using simplified transformations and ordinary statistical methods, it is not obvious

. that greater reliance on formal econometric methods would benefit system dynamics models, Tables 1 and
2 indicate that the Rate adjustment will do better.

Traditional discrete time econometric models are argued to benefit from economic theory and restrictions
on parameters formulated in continuous models. The above results also introduce an important qualifica-
tion to this claim.

An example is provided by the inventory equation. Both the Euler and the Equation by equation methods:
use the inventory expression as it is in the continuous model, with the exception that the rates of change
(g¢ and s¢) are multiplied by the time interval 6. No parameter is left to be estimated. This introduces
serious biases in the discrete model. In the case with yearly data, the three parameters are over-estimated
by on average 163 percent. With quarterly data, the three parameters are over-estimated by on average 14
percent. Tables 1 and 2 indicate that the Rate adjustment will reduce the biases.

One obvious response to the transformation problem would be to play down the importance of theory, to
ignore restrictions on parameters, and "let the data speak for themselves”. This can bé done by the use of
black-box models, e.g. ARMA models, or by for instance a methodology developed at the London
School of Economics, see e.g. Henry and Richard (1982) and Henry and Richard (1983). Maybe transfor-
mation biases explain why black-box models at times out-perform structural models.

According to Simon (1984), it would be a step in the wrong direction to play down the importance of
prior information: "It is not likely that important new facts can be obtained by applying sophisticated
statistical techniques to aggregate time series. The residual fluctuations in the data are mostly below the
level of random noise”. (p.51). "The - - strategy for economics is obvious: to secure new kinds of data at
the micro level, data that will provide direct evidence about the behavior of economic agents and the ways
in which they go about making their decisions.” (p.40). This leads to Bayesian methods where not only
restrictions on parameters are used, but also prior estimates.

The above results also introduce an important qualification to the use of Bayesian statistics. Using
simplified transformations to enter prior information in discrete time models introduces biases. The above
example with biases in 75 and 7; serves to examplify. Again, the Rate adjustment will serve to reduce
biases.

The transformation biases could also be used to argue for stronger reliance on prior estimates and for
- formal statistical testing of prior information. Better prior information would reduce the need for formal
testing of theories against time series data (one might know a priori that a parameter is significantly
different from zero)°. Similarly the. transformation biases could be used to argue for continuons model
calibration or possibly continuous-discrete Kalman filtering, and structual and behavioural tests of the
types proposed by Forrester and Senge (1980) and Zellner (1981).

In fact there exist studies where prior information by itself explains historical behaviour.
Meadows (1970) has developed a continuous commodity cycle model. When he ‘enters prior
information about lifetimes, gestation periods, offspring per litter etc. for chicken, pigs, and
«cattle, the model produces cycles with periods very close to historical observations (2.5, 4 and
15 years).
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