MODELLING THE IMPACT OF QUALITY INITIATIVES OVER THE SOFTWARE

PRODUC'I' LIFE CYCLE
Thomas Fiddaman and Rogeho Oliva R ,Rembebrt Ai'anda ‘,
Sloan School of Management Aragon Associates, Inc.
Massachusetts Institute of Technology 24 Redfield Circle, Box 449
‘One Ambherst St., Room E40-294 Derry, NH 03038, USA
‘Cambridge, MA 02139, USA ' - s
ABSTRACT

This paper describes a System Dynamics model which forms the basis for a-
management flight simulator that explores the impact of two total quality initiatives,
Formal Inspection and Quality Function Deployment, on the software development
and adoption process. The paper focuses on the new perspective on software
development dynamics gained in the construction of the model. It describes the
measures of performance used and the causal structure of selected sectors. The
model links existing software project management and market diffusion structures,

adding an explicit representation of product functionality and- evolvmg customer

requirements based on Kano’s Dimensions of Quality diagram. A discussion of
future goals for this research and an evaluation of the impact of this kind of work on
the software industry is presented.

W

In general, current process and quality improvement efforts in the software field have a
time horizon and substantive focus that includes only a single development project. As a
result, software developers operationally regard processes that have long time scales or that
cross organizational boundaries as beyond the scope of their concern. This limited perspechve
inhibits the capacity of a software development group to learn about long-term processes and
to understand its relationships with other functional groups in its orgamzatlon and with
customers.

This bias is reflected in the kinds of models now avaﬂable to software project managers.
The planning models most widely used today are statistical models that forecast schedule and
resource requirements for one software release. They exclude consideration of customer
satisfaction measures and rely on curve-fit historical data for prediction (Boehm, 1981;
Putnam, 1989). Such models do not address an important quality variable, the gap between
delivered functionality and user requirements at the time of software release. Nor do they
consider the evolutionary nature of customer requirements and the dynamics of software
markets.

We are currently engaged in building a Management Flight Simulator (Diehl, 1992b;
Graham, Morecroft, Senge, & Sterman, 1992) to support policy and management decisions
about the use of Total Quality Management techniques for software development. The Flight
Simulator will be used as a "Software Product Quality Microworld", a computer-based
learning environment enabling cross-functional product development teams to practice
decision making in accelerated time. The simulator extends the traditional view of the
software development process to include multiple releases of a product, market diffusion
dynamics, and the evolution of customer requirements.

The simulator will provide a common vocabulary and set of experiences upon which to
base discussion and encourage consideration of the short-term costs of quality initiatives in
the context of their long-term dynamic benefits. In using such a simulator, a cross-functional
team also has the opportunity to rehearse how to cooperate better, deepening its
understanding of how local decisions affect other functions and product success in the long

122 SYSTEM DYNAMICS '03

term. The simulator is appropriate for training rather than for operational decision support,
because’ the -underlying model currently describes general rather than precise behavior
(Graham, et al., 1992). While it contains hypotheses and assumptions which are still tentative,
we have found it tobe useful to software developers mlplementmg quahty programs '

MML_DMEMENI

Our model builds on earlier system dynamlcs models by Tarek Abdel-Hamid on software
project dynamics (1991) and by Winston Ledet on the software product life cycle at Digital
Equipment Corporation (Aranda, 1991; Aranda & Ledet, 1992; Ledet, 1992). Tarek Abdel-
Hamid's model provides an operational representatron of a smgle-release development
project, with explicit representation of important processes such as the rework of errors and
delays in hiring and training which are absent in traditional models. Winston Ledet's model
adds multiple product releases, the evolution of customer requirements, and market
diffusion dynamics (Bass, 1969; Sterman, 1991). We completely revisedthe model
formulations and extended the concept of requirements evolution: The model was initially
developed as part of our: work at’ D1g1ta1 Equipment Corporahon s Software Engmeermg
Group. :

" The 'model was developed using the iTHINK™" (Richmond, Peterson, & Charyk 1992) -
system dynamics modelling software, and the Microworlds™ Creator and $**4 products
(Diehl, 1992a; MicroWorlds, 1992) for modelling and simulator interface development. The
model has approxunately 750 relationships, divided into 20 sectors, with 75 stocks. While the’
structure of the model is conceptually clear, constructing the model involved many difficult -
formulation issues. This was principally due to the difficulty of mixing continuous processes,
like product adoptlon and program code generation, w1th drscrete processes, hke the release '
of a new version of a product. :

““We used Soft Systems Methodology (SSM) to help frame the scope and ob]echves of the
dynamic modelling work. SSM (Checkland, 1988; Wilson, 1984) was developed at the
University of Lancaster in the 1970's as engineers found'it necessary to extend the system
approach to tackle organizational problems. SSM is a methodology to elicit; evolve and shift
mental models. SSM proved: effective in conjunction with system dynamics’ ‘modelling,
especially in drawing the bounds of the relevant systems and focusing on key behaviors. '

os-

““Over the past f1ve years, Total Quahty Management (TQM) techmques have been
adopted by many software development organizations. TQM techniques arose in relatively -
mature product settmgs where requirements are more stable and production processes are
more repetitive and longer lived than is typical in software development. The Quality
Movement has spawned three types of techniques: Quality Control (Fitness to Standard),
Reactive Improvement (Continuous Improvement), and Proactive Improvement (Fltness for
Latent Requrrements) (Shiba, Graham, & Walden, forthcommg 1993).

~ Most of these quality approaches emphasize greater rigor of the software engmeenng"
process. A more recent set of initiatives places emphasis on listening to the "voice of the
customer” through Quality Function Deployment (QFD), a structured way to discover
software product attributes desired by customers and to map these to engineering functional
specxﬁcahons (Hauser & Clausing, 1988; Zultner, 1992). Aligned with the trend towards TQM
is the adoption of performance metrics that address a richer set of business issues than
traditional measures of program error density or project schedule fulfillment.

Interest in TQM and process improvement is spreading in software circles, but the goals
for such programs are too often set by the benchmark of the earliest implementors.
Theoretical frameworks are needed to evaluate the strategic impacts of these policies in such a
dynamic and constantly-evolving working environment as software development. System

SYSTEM DYNAMICS '93 123

Dynamics modelling is a powerful medium for exploring and testing the trade-offs and

potential benefits of using a particular strategy at different stages of a software product's life. ...
_ In order to effectively manage TQM initiatives and the trend towards integrated software -

metrics, we need a shared view and common language among four culturally and
administratively separate groups: development engineers, quality assurance personnel,
business and finance managers, and customer contact personnel (support,-sales, and
marketing). The contribution of each group to product development decisions varies over the
product life cycle. For example, customer-focused reliance on users to drive product design
may produce excellent results in a mature product environment, but disappointing
consequences when launching an innovative product that customers have little experience
using. Similar problems can arise from allowing engineering innovation or time-to-market
considerations to predominate in product planning decisions. ’ -

- Two qﬁestions dominate current debate about software management: how to .c_omplet‘e.‘

projects on schedule and within budget. This focus reflects that today's software process and

quality improvement efforts generally treat the boundary of software development systems as -

beginning with accepting a set of requirements and ending at the conclusion of a project to
meet those requirements (Davis, Bersoff, & Corner, 1988; Nguyen, Clough, Ahmed, Smith, &
Vidale, 1992, are conspicuous exceptions). This view, borrowed from engineering disciplines,
implies that the rate at which requirements change is negligible ~ or at least slower than the

rate at which software to meet the requirements can be developed. This view also implies .

that engineering success ought to be judged by success in meeting the engineering
requirements formally stated in a functional specification at project start rather than the user
requirements at time of project conclusion. o N o
" This prevailing boundary definition is overly restrictive and omits some of the most
critical quality and productivity improvement questions facing the software development
community. Therefore, we have focused the model development to address broader strategic
questions. This is reflected in our choice of two principal outcome measures for evaluating the
simulated outcomes of policy experiments:. the fit of product features to customer
requirements, and the Return Map. ’ ' s :

Fit of Product Features to Customer Requirements

_ Software developers aim to create product features that meet Customér needs, but
customer requirements are a moving target. This can have profound strategic consequences.
for software companies. A company which allows the gap between customer requirements.

and -their product's features to grow large becomes vulnerable to competitive productf’f

introductions. The rate of change of customer requirements is an important consideration

when weighing additional functionality of a new release against the time required to.

implement it. Figure 1 shows the varying gap caused by growth in customer requirements
and product features as generated by the model. The time scale is ten years, typically

representing several releases from the first in a product category (e.g- spreadsheets) to the last '

supported release.

124 - . SYSTEM DYNAMICS '93

emie—m Cust Req. =—8— Product Scope - —-— Released Features
140 T ‘

RS LA

120 4 - L
100 -

Features

10

. e Years
Customer Requirements and.the set of features-developers are currently implementing (Product Scope) are
constant until a product is released (around the end of the second year in this simulation run). The developer
sets a new Product Scope target for the next release by the end of the third year, and begins design and testing.
In the meantime, customer requirements are increasing. In the last quarter of the fourth year, the developer
again releases a new version of the product (cf. Davis, 1988). :

L e Figure 1
Evolution of Customer Requirements and Product Features

The Return Map: Time-to-Profit and Life Cycle Profits . . '
" In order to study the long term financial implications of different policies, we adopted the
'Return Map' (House & Price, 1991) as a principal indicator of performance. The Return Map
helps key internal groups focuson .. ' ‘ bt
the inevitable reality that product , L ey
success as a whole depends on —te—logCumVarCost ——BelogCUMPrON = mmLog Cum Inesimert
their cooperation in creating value :
for enterprise customers and
shareholders. The Return Map is
most useful. in conjunction with
the product adoption graph, which
provides a context in which to
compare absolute revenue against
unit share of adoption and relative -~ -
standing in the market. Figure 2 - _
ShOWS a software prOdu,Ct Return - The return map depicts product ﬁme—to-m:rﬂket, time-to-profit, and cumulative
Map : generated by_ Vthe model. profit. Much of the development investment occurs during creation of the first
Revenues are a pro duct of ‘unit release.. When the product reaches the market, revenues begin to accumulate,

Rt S : and cumulative profit becomes positive shortly thereafter. Variable costs
sales .and price, and sO are a dominate investment later in the product life cycle. -

R etetem = mtnl
e
Lt

Log$ |

measure of purchasers whoregard =T Figure 2
the product as offering ' "The Return Map
competitive value.

OVERVIEW OF MODEL CAUSAL STRUCTURE AND BEHAVIOR

Our model can be summarized in terms of two feedback processes, shown in-Figure 3. A
positive loop drives the growth of customer requirements and released functionality. The
software development process is a:negative feedback loop which closes the gap between

customer requirements and delivered-product features.- . .. ‘

- SYSTEM DYNAMICS '93 125

These simple processes are : New
responsible for much of the . Foatures N
interesting behavior of the model. gesc;re(: S4 Needed ~ Development
The actual model structure is much Fer:tul::s VAR Resources
more complex, as it represents s '
_multiple features of customer .
requirements, the marketplace, and R : B
the development process explicitly. P
The size and detail of the model is = _ Customer “Feathre
greater than can be covered in an Requirgments Development

article of this length. Figure 4 gives
an overview of selected model
features which are of particular

Product ¢
Features‘__/l

Figure 3
relevance to TQM initiatives. Evolution of Customer Requirements and Product Features
N
o THE SOFTWARE FIRM
r » DEVELOPMENT PROCESS)
Propuct
DESIGN . Desirod PLANNING
: Functionality R M .
* Resource Managemen
CowmPETITOR) . * Personnel Alloc%ﬁon
* Customer Inquiry (QFD) * Desired functionality: -
"4 Prodizct Development o « Functional Specification : gzlse::“;' &ﬁity
« Release Scheduling New . -~/ — \y
::dr:;l;;gﬁn Expend. Requirements _?uaht:/)) Heq_uireq :
& Bxpent. & Bug Reports arge) Progress Functionality -
i Testing f [S
M, N ~ Progress (
arket L
Product Information TESTING - SOFTWAHE
Releases Revenue-. DEVELOPMENT
Price o . S
Fl:rioduct et ‘ * Low Level Design - : -
Pl | s,
MARKET | rBmordiscoveryrate [T pouork |+ Attsines Funciontis
« Installed base \. J
* Experience w/product : Aoiae
gt |y Ceromnt
\ Attractiveness " Information ~ " MARKETIN N ST
~ RKETING ' “ACCOUNTING _
S Price & » © }Marketing | %ﬁﬁ{iﬁ;’:%ﬁ‘;f mue
‘Marketing Effort. §.__| - *Marketing Expend. Cost * Profits o
BRE i -Pr;cmg’ *ReturnMap
Revenus . /
Figure 4

~ Subsystem Diagram

Customer Requirements Evolution o :

Our model incorporates a simple dynamic theory of requirements evolution which'is
graphically summarized in Figure 5. Customer’ requirements are disaggregated into: three
types. Two of these, Must-Be's and Delighters, are taken from the Kano (1982) diagram. The
third, Noise, represents features which are not widely desired by customers. Delighters

126 SYSTEM DYNAMICS '93

Customer
s Requirements

" Hardware
ln‘novation

Reqmrements

Rate of Gap

Experiences Adoptlon :
) s

~ User:

~“'decrease attractiveness. -

Requirement o T
- Ge eratlon </ KDelwered .

Features.

increase the attractiveness of -a
product, while the absence of Must-
Be features or an excessive ratio of
Noise features to total features

“Delighters are generated by
customer experience witha product.
They -are also generated through
software developers' innovation.

“Delighters evolve to become Must-

Be's as customers come to expect

. their presence. Must-Be's are also
. ex'ogenously generated by

Figure 5 innovations on the hardware

Evolution of Customer Requirements. platform that generate new
As customers gain experience with-existing products, they generate new requirements for . compatibility.

requirements. The set of new requirements that can be generated is bounded : : .
by the existing feature set, so the rate of new requirements generation Noise features arise when customers

diminishes as requirements exceed delivered features. After a delay, new genefaté'reqﬁiréments which are not
s‘l;gii‘:x;; Iieatures are dehvered creabng the potential for further requirements wid e1y~ needed and when
e ; developers'. innovations do not
match customer requirements.
- Software developers seek to match the attributes of their product to customer
requirements. They gain knowledge of customer requirements through user complaints and
customer inquiry. Known customer requirements ‘and. developer innovations are
incorporated. into the product scope (the set of features to be included in‘the next release):
through the functional design process. - Once the product scope has been set, software
developers generate a low-level design and program code that implement the desired
features. When the product is released, the portion of features in the product scope that have
been completed become part of the stock of released features. The behavior resulting from the
evolution of customer requirements and product development is shown in Figure 1.

Customer : ' Known : Product Released
Requirements) " Requirements Scope .- - Features -
_ . Hardware ; - 1.2 7 -Customer. . : - . S E torreas
> R l|n__qulry »| Idea " Feature " N N
p - i . LY Devalopment : Implementation EEEE o
User . User < . A 4 TR
: Expedanoa,l : Complaints Y T =)) e
“Soltware .- : ‘ o N
. innovation. . | . : . ’ : :

Figure 6
v Requzrements Evolutzon, Knowledge Acquzsztzon, and Product Development

Requirement change is fueled by an increasing number of first-time users who find and
develop new uses for the product and evolve a set of desired product attributes. The rate of
change slows as the maturity of the installed base increases and a smaller proportion of users
are innovators. These dynamics can be anecdotally illustrated by thinking back to the first
time you used a new type of software product and considering how differently you would
have described desired product attributes then than you would have after several months of
intensive use. ‘If over the same time period we'd asked for your requirements for an
automobile (a mature product) they would have changed comparatively little.
Product Adoptlon -

In the market sectors, the principal developer and a competltor set prices and market their
products. The released products are evaluated and adopted by consumers according to a

SYSTEM DYNAMICS '93 : 127

] Competitor Adopters

D current ver Adopters [Past ver Adopters

250,000 - -

200,000

0 e '
0 v 2 3 4 5 .6 7 8 9 10

. o Years) o
In this simulation run, most adoption takes place in the sécond release, at the
end-of the third year. When the second version is released, current version
users of our product become previous version users. The profile of the
graph is the Total Adopters in the Market. . o
‘ Figure 7
Product Adoption

Perceived
Attractiveness

market diffusion model (Bass,
1969; Mahajan, Muller, & Bass,
1990). Purchasers compare
products on dimensions of
features, price, error density and
installed base attractiveness.
Figure 7 shows the adoption
process. Initially, unit sales grow
exponentially as word-of-mouth
effects multiply consumer
awareness of the product and the

_size of the installed base increases

product attractiveness. Purchases
then decline as market saturation

- is reached, moderated by

replacement purchases (upgrades

. and product switching).

Impact of QFD and FI initiatives

Quality Function Deployment
Originally developed in Japan,

QFD is a technique for allowing

the "voice of the customer” to drive

the design process; reports of'its
success are extensive ‘(Zultner,
1992). QFD is a proactive effort to-
Previous - - interview and observe customers-

Version . . .

tsers. - to discover their real requirements.
The basic assumption is that this -

: “+ process will help 'close the gap'

I Mouth - Upgrades p

The market is segregated into stocks of Potential Customers, customers who are bet W een.. th € customer

actively looking for a product to purchase (Customers in Market), and Users. requirements a_nd our:-current

Users are further disaggregated into users of current and previous versions of underst an ding: of" them. An

each developer's product. Growth in sales is driven by word-of-mouth, - o))
marketing, and installed base effects. As the stock of potential iew customersis ¢ additional b en_ef it _for a
development team engaged in a

Potential
Customers : . -

Market Entry

O

depleted and new product versions are released, upgrade and replacement :

purchases becomé important. - C
Figure 8" QFD effort is the creation of a
Market Structure and the Adoption Process. - -common language and a shared
Perceived e understanding of product
scust‘;‘,’,ﬁ,‘f;}’?qeq;;& aFD direction. -'A team that goes
’ i TN Effort through this process works more
Customer O _ effectively, at least in the design
Requirements iy
~ s Sou stages of -a particular release.
R Commitient Figure 9 illustrates these
' ‘ assumptions as a causal loop
:Customer e o - ~diagram.
i i - Communication gram. Y
Satisfactior™y " Overhead The QFD process also’ has

costs. It takes time for the
development team to go out and
interview the customers, (reducing -
development resources and hence
increasing development time and

Feature: s 0

at release‘g Produétivity
Figure 9

Quality Function Deployment

SYSTEM DYNAMICS '93 128

cost), and substantial rework and new work
may be generated for developers. An‘inherent -
limit to QFD benefit is the requirement change
rate, i.e. how much requirements have evolved
since the last QFD, which depends upon recent
releases, time since release, and adopter
experience.

Formal Inspection

Formal

towards

Formal Inspection (FI) (Cohen, 1991; Schedule “completion
Fagan, 1986) focuses on two key processes: the " Pressure_¢° -~
transformation of customer requirements in Figure 10
the product specification to functional unitsin' - =~ - . Formal Inspectzon

the design, and the transformation of design :

elements to working code modules. This has been modeled as a reduction in the design and
coding error generation rates based on the fraction of coding and design team resources
allocated to FI. The benefits of FI include greatly reduced need for product testing and error
correction, lower development and support costs (errors are less expensive when they are
corrected earher), and higher quahty as perceived by customers. This effect is retained in base
code reused in subsequent releases. Like QFD, FI has costs and dlrmmshmg returns. FI
requlres development resources and hence increases development time and ‘cost in the short
run. :

CONCLUSIONS & NEXT STEP :

" 'We believe that system dynamics is a promlsmg avenue for the software development
community to better understand how the change of requrrements is coupled to development
policies, and to conduct experiments aimed at incorporating this knowledge into functionality
release and quality policies. Many of the benefits of quality and process-improvement
initiatives materialize over a longer time frame than a single project, and we believe that
system dynamics models are a helpful tool for software developers to understand and
balance their lorig-term benefits and short-term costs. We regard our model asa step toward
realizing the potential gains of a systems perspective.

The current software development focus on process (the engineering view) to the
exclusion of outcome (end-user and enterprise shareholders' views) leaves unchallenged core
assumptions of process improvers about the outcome of greater rigor and process maturity.
The broader focus of our model reveals the possibility that in situations where requirements
are highly volatile, greater process rigor may result in producing software that is less
* satisfactory to users—and hence less commercially viable. The tradeoffs among quahty,
functionality, and development resources, critical in establishing value-added in end user's
eyes, is better understood with a view thatincludes the variable stability of requirements.

At some stages of the product life cycle end-users may value quick delivery of limited-
functionality code with a relatively high error density. At other stages end users value later
delivery of higher-functionality and lower-error density software. The postulated
requlrements evolution dynamics provide a framework for discovering the level of process
rigor (e.g. FI and process maturity standards) and customer interaction (e.g. QFD) suited to
the conditions in a particular development effort. S~me- tentative guidelines that have
evolved from this work are: :

e It is useful to consider a product life time frame (from initial release to
retirement) rather than a project (single release) time frame when evaluatmg
process and quahty unprovement programs

- SYSTEM DYNAMICS '93 129

* A critical outcome criterion determining customer:satisfaction is the size of the
gap between delivered functionality and user requirements at the time of
software release (or purchase).

¢ The rate at which requlrements change is a function of cumulative user "
experience (the product of the number of users and their time spent using -
- software). As users learn and gain experience, latent requirements are revealed
in observable forms

* Under conditions of rapid change of user requirements, strategies that cause
longer development times are least likely to result in software that satisfies user
requirements

¢ QFD and other customer-driven requirements gathermg methods are hrmted by - -
the level of expressible or observable requirements at any point in-time :

* FI and other rigor-oriented process enhancements will produce greatest return
“under conditions where the rate:of requu'ements change enables longer code hfe ‘
(mcludmg reuse strategies) e

* High-rigor strategies favor the ability to more quickly deliver a given level of'
functionality in a later release, at the price of later delivery of the initial release

At this early stage we have identified many opportunmes for research-and for
improvements in the model. These include testing the usefulness of the flight simulator and
the "feel” of model behavior with a group large enough to reflect the diversity of views
among software developers, and validating the hypothesized requirements evolution
dynamics against a range of historical software products. We anticipate that the latter effort
_will benefit from expenmentatron with alternative formulations of product functlonahty,
particularly with regard to distinguishing the point at which a product enhancement is
.usefully seen as the beginning of a new class of product rather than as a later version of an
existing product. It would also be of interest to investigate the utility and extensibility of our
model's concepts for describing the evolution of requirements of other product types.

ACKNOWLEDGMENTS

The authors would like to thank John Sterman for gu1dance on the fhght simulator project
discussed in this article, and also on earlier modelling upon which the model draws,
especially that carried out by Winston Ledet.. We are also grateful to Tarek Abdel-Hamid for
review comments at various stages of the work and his assistance in incorporating structures
from his seminal model as the basis for the development sectors of our model. We had the
benefit of Ernst Diehl's assistance and review comments regarding Microworlds' development
and plans. We also appreciate the review and comments of Nghia Nguyen, Anne Clough,
Shuur Ahmed, Brad Smith and Richard Vidale. Finally, thanks are due to numerous
individuals in Digital Equipment Corporatlon for sharing useful perspectlves and data

M@.NLE&

Abdel-Hamid, T: K. and S. E. Madmck 1991. Software Pro]ect Management Dynarmcs An
Integrated Approach . Englewood Cliffs, NJ: Prentice Hall.

Aranda, R. R. (1991) Overview of TNSG Systems Thinking Project: A Customer-Centered Model of
the Software Business. internal document, Nashua, NH:Digital Equrpment Corp Software
Engineering Group.-

Aranda, R. R. and W. J. Ledet (1992) Systems Modelling & TNSG Mzcroworlds presentation at
Digital Equipment. Corporation Concurrent Engineering Lecture Series. March 19, 1992.

Bass, F. M. 1969. A New Product Growth Model for Consumer Durables. Management Science,
Vol. 15: 215-227.

130 _SYSTEM DYNAMICS.'93

Boehm, B. W. 1981. Software Engineering Economics . Englewood Cliffs, N.J.: Prentice-Hall.

Checkland, P. B. 1988. Soft Systems Methodology An Overv1ew Journal of Applied Systems
Analysis, Vol. 15:27-30.

Cohen, L. 1991. Inspection Moderator’s Handbook D1g1’cal Equlpment Corporation.

Davis, A. M., E. H. Bersoff and E. R. Corner. 1988. A Strategy for Comparing Alternative
Software Development Life Cycle Models. IEEE Transactions on Software Engineering, Vol.
14 (10): 1453-1461.

Diehl, E. W. 1992a. MicroWorld Creator™ 2.0 User’s Guzde and Tutorial . Cambridge, MA
MicroWorlds, Inc.

Diehl, E. W. 1992b. Participatory Simulations software for managers: The design philosophy
behind MicroWorld Creator. European Journal of Operational Research, Vol. 59 (1): 210-215.

Fagan, M. E. 1986. Advances in Software Inspections. IEEE Transactions on Software

- Engineering, Vol. 12 (7): 744-751. _

Forrester, J. W. 1961. Industrial Dynamics . Cambridge, MA: Productivity Press.

Graham, A. K,, J. D. Morecroft, P. M. Senge and J. D. Sterman. 1992. Model supported Case
Studies for Management Educatlon Buropean Ioumal of Operational Research VoI 59 (1):
151-166. . ,

Hauser, J. R. and D.P. Clausmg 1988 The House of Quahty Harvard Busmess Revzew, Vol. 66
(3):63-73.

House, C..H. and R. L. Price. 1991. The. Retum Map: Tracking Product Teams. Harvard -

. - Business Review, Vol. 69 (1): 63-73.

Kano, N., N. Seraku and F. Takahashi (1982) Attract1ve Quality and Must-Be Quahty In
Nippon QC Gakka 12th Annual Meet (1982).

Ledet, W. J. (1992) Balancing Time-To-Market, Customer Understanding, and Creative Innovation.
Master’s Thesis, Sloan School of Management, MIT. ”

Mahajan, V., E. Muller and F. M. Bass. 1990. New Product Diffusion Models in Marketmg A
Review and Research Directions. Journal of Marketing, Vol. 54 (Jan):= =~

MicroWorlds, I. 1992. MicroWorlds S**4™ User’s Gude and Tutorial . Cambridge, MA
MicroWorlds Inc. ‘

Nguyen, N., A. Clough, S. Ahmed, B. Smith et al (1992). The Software Game: A Dynamic
Process Model. In Systems Thinking in Action Conference, . Cambridge, MA: Pegasus
Communications.

Putnam, L. H. 1989. Strategic Issues in Managing Software Cost and’ Quahty Engmeermg
Management Journal, Vol. 1 (4): 9-18.

Richardson, G. P. 1991. Feedback Thought in Social Sczence und Systems Theory Phﬂadelphm
University of Pennsilvania Press.

Richmond, B., S. Peterson and C. Charyk. 1992. iTHINK User’s Guide . Hanover, NH: High
Performance systems.

Rubin, C. W. 1992, Quality: The competitive Advantage7 American Progammer, Vol. 5 (2): .

Shiba, S., A. Graham and D. Walden. forthcoming 1993. A New American TQM: Four Practical
Revolutions in Management . Cambridge, MA: Productivity Press.

Sterman, J. D. 1991. B&B Enterprises Management Flight Simulator: An Interactive Simulation for
New Product Management . Cambridge, MA: Sloan School of Management, MIT.

Wilson, B. 1984. Systems: Concepts, Methodologies and Applications . Chichester, UK: John Wiley
& Sons,

Zultner, R. 1992, QFD for Software: Sat:sfymg Customers. American Programmer Vol. 5 (2)

SYSTEM DYNAMICS '93 131

