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Abstract

This paper investigates how mode- locking and other h1ghly nonlinear dynamic
phenomena’ arise: through the interaction of two: capital-producing sectors in a
disaggregated economic long-wave model. One sector might represent the construction of
buildings and infrastructure capital with long lifetimes while the other represents
production of machinery, computers, etc., with much shorter lifetimes. - Due to the
positive feedback associated with capital self-ordenng, each sector in isolation produces a
self-sustained oscillation with a period and amplitude determined by the characteristics of
that sector. However, the sectors interact through their mutual dependence on each
other's output for their own production. When this coupling is accounted for, the two
sectors tend to synchronize or lock together with a rational ratio between the periods.
While keeping the aggregate equilibrium characteristics of the system constant, we study
how this locking occurs as a function of the difference in' capital lifetimes and as a
function of the strength of the coupling between the sectors. Besides mode-locking and
quasi-periodic behavior, the observed phenomena includes cascades of period- doubling
bifurcations, chaos, and intermittency. When the difference in capital lifetimes is very
large, the system behaves like a one-sector model with a reduced capital content of
production: Only one oscillatory mode remains, and 1t is much less pronounced than in
the original one- sector model. :

1. Introductlon

John Sterman s simple long wave model (1985) has provided a theory of long-term
economic fluctuations, based on the notion of the non-linear, disequilibrium investment
accelerator. However, the simplicity of Sterman's model raises many questions about
how the long-wave theory holds up in a more realistic model. (For instance, the model
has no price system for capital.) The model should clearly be extended in a number of
directions so as to provide a more detailed and realistic description.

This paper is concerned with the simple model's aggregation of capital into a single type.
‘The real economy consists of many sectors employing different kinds of capital in
different amounts. Parameters such as the average productive life of the capital produced
and the relative amounts of different capital components employed may vary from sector
to sector. In isolation, the buildings- and infrastructure-capital industry may show a
temporal variation significantly different from that of, for instance, the machinery
industry. What circumstances lead more realistic multi-sector models to behave in a
similar fashion as the aggregate one-sector model, and what circumstances produce more
complicated dynamic behaviors? To address this question requires a detailed look at the
mechanisms that couple different sectors in the economy together, and a study of the
implications of this coupling for different parameter values.
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An early study by Kampmann (1984) took a first step in this direction by disaggregating
the simple long-wave model into a system of two or more capital-producing sectors with
different characteristics. Kampmann showed how a multi-sector system could produce a
range of different behaviors, at times quite different from the original one-sector model.
Moreover, analysis of the one-sector model with external forcing in capital demand has
shown how the model produces mode-locking, period-doubling bifurcations,
intermittency, chaos, and other interesting nonlinear dynamic phenomena (Mosekilde, et
al. 1992, Sterman and Mosekilde 1993). It is thus reasonable to expect a multi-sector
model to show great richness in behavior.,

The present paper focuses on a two-sector model. One sector might represent the
construction of buildings and infrastructure capital components with very long lifetimes
while the other could represent the production of machines, transportation equipment,
computers, etc., with much shorter lifetimes. The two sectors are coupled togcther
through their mutual dependence on each other's output for their own production. -

We consider the influence of two factors, the difference in the average lifetime of capital
produced by each sector, and the degree of linkage between the sectors. One would
expect that a significant difference in capital lifetimes would, ceteris paribus, lead to more
complex fluctuations which may well differ substantially from the original 50-year cycle.
Conversely, a stronger coupling between the sectors should lead to more umform
behavior, akin to that of the original single-sector model.

The following section presents the equations of the disaggregated model. Sectlon 3
presents the simulation results and Section 4 our conclusmns

2. The Model

The model consists of two capital-producing sectors which use capital from itself and
from the other sector as the only factors of production. Each sector receives orders for
capital, both from itself, from the other sector, and from the consumer goods sector.
Orders are backlogged until capital is produced and delivered. Apart from the obvious
modifications needed to extend the model to more than one sector, and except for a few
alterations in parameter values and function spec1ﬁcanons which we felt were appropriate
for a more detailed study, the dlsaggregated model is equlvalent to Sterman S or1g1nal
model (Sterman 1985). :

Each sector i = 1,2 maintains a stock K; of each capital type j=1,2. The cap1tal stock is
increased by deliveries of new capital and reduced by physical depreciation. Capital of
type j depreciates exponentially with an average lifetime of 7;. Capital output is
distributed "fairly" between customers, i.e., the delivery of capltal type j to sector i is the
share of total output from sector j, x;, dlsmbuted according to how much sector i has on
order with sector j, S, relative to sector j's total order backlog B;. Each sector orders
capital from both sectors 0; and oy, and receives orders for its product from both capital
sectors, o; and o, and from the consumer goods sector, g;. Incommg orders
accumulate in a backlog B; which is then depleted by the sector's deliveries of capltal X;.
Hence, the ten state varlabies in the model evolve according to,
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Each sector's output x; is limited by its production capacity c;. The capacity in each
sector is assumed to be a constant-returns-to-scale Cobb-Douglas function of the
individual stocks of the two capital types, with a factor share, a €[0,1], of the other
sector's capital type and a share 1— ¢ of the sector's own cap1ta1 type, i.e.

=K~ -K % K}j#i, 2)
where k; is the constant "sector capital-output ratio" (see below). The parameter « thus
determines the degree of coupling between the two sectors. (Note that the matrix of
equilibrium capital stocks is assumed to be symmetric. The equilibrium flow i input-output
matrix, on the other hand, is not symmetrical unless the average hfeume of capital is the
same for both types.)

The output from sector i, x;, depends on the sector’s capac1ty ¢;, and the sector’s des1red
output x; . If desired output is much lower than capacity, production is cut back,
ulmmatcly to zero if no output is desired. Conversely, if desired output exceeds capacny,

" output can be increased beyond capacny, up to a certain limit. Spec1f1cally, the sector's
output is formulated as -

x =f(§f ) n £(r)= a[ (= } ©

and g is a parameter which determines the maximum over-production possible. The
function f(.) differs slightly from Sterman's original piece-wise linear function. In
particular, it allows production to exceed capacity for high values of its argument. The
formulation was chosen to obtain an analytical, infinitely differentiable function.

Sector i's desired output x; is assumed to be the value that would allow firms in that
sector to deliver the cap1ta1 on order B; with the (constant) normal average delivery delay
d; for that sector. Hence,

X, = ‘6— . ) (4)

Sector i's desired orders for new capital from sector j, o;, is assumed to consist of three
components. First, all other things equal, firms will order to replace depreciation of their
existing capital stock, K, / 7;. Second, if their current capital stock is below (above) its
desired level & ; firms wﬂl order more (less) capital in order to remove the discrepancy
over time. Thll‘d firms consider the current supply line S;; of capital and compare it to its
desired level s ; if the supply line is below (above) desired, firms order more (less) in
order to increase (decrease) the supply line over time. In total,

. K,-- k," - K,“ S: - Sn ‘
0":_1+1K1+us1, (5)
Y Tj T; 7

where the parameters 7\ and 7, are the desired adjustment times for capital stock and the
supply line, respectively.

Actual orders, however, are limited to be non-zero (no cancellation of orders) and the
fractional rate of expansion of the capital stock is also assumed to be limited. These
restraints are accounted for through the expression
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0,=\K;/7;) gl v—— |, where g(r)= v , (6)
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and b, b, b,, ¢, c, are parameters with values '

' 27 8 2

bEG =T b=y a=7 6 =3 O

The paramaters in (7) were chosen to approximate Sterman's original piece-wise linear
function as closely as possible and yet obtain an analytic, infinitely differentiable function.
The choice of parameters further assures that L

g)=1 g’'(1)=1, g"(1)=0, ; ®)

i.e., so that g(r) has a "neutral” area around the steady state, r=1, where actual orders
equal desired orders; which in turn equal current capital depreciation

The desired capital stock k is assumed to be proportlonal to the desired production level
. Thus,

ki =Ky X, BN )
where k; is a constant "capital—output ratio" of capital type j in sector i (see below).

In calculating their desired supply line s, firms are assumed to take account of the current
delivery delay for each type of capital. Their target supply line is the level at which the
deliveries of capital, given the current delivery delay, would equal the current deprec1at1on
of the capital stock. The current delivery delay of cap1ta1 from a sector is the sector's
backlog d1v1ded by its output. Thus,

Finally, the orders from consumers to each sector g, are assumed to be exogenous,
constant, and the same for both sectors. The absolute values of the g;'s are unimportant;
they are 51mp1y scaling factors. However, their values relative to each other are
important, since they change the dynamics of the model considerably (see Kampmann
1984). This would be an obvious area of further investigation. e

The capital-output ratios and average capltal lifetimes are constructed in such a way ‘that
the aggregate equilibrium cap1tal—output ratio and capital lifetime for the system as a whole
remains constant, equal to their values in Sterman's original model. Specifically, the
average capital lifetimes in the two sectors are .
| Ar At

2 P =T 7=20 yeqs, | (11)
where the bifurcation parameter A7 is the difference in capital lifetimes (in years) between
the two sectors. The capital-output ratios are

T,=17

_ T T , i |
K, =(1-—a)x—T‘—; y = AKX K= K oK%, i# Jy k=3 years. - (12)
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This formulation assures that capacity equals desired output when both capital stocks
equal their desired levels.. It also assures that the equilibrium aggregate lifetime of capital
and the equilibrium aggregate capital-output ratio equal the original parameters in the one-
sector model. Moreover, is can be shown that the desired capital mix defined by (9) is the
one that minimizes the steady state cost, given the desired output. (Imphc1tly, the units of
capital are defined so that their (constant) pnces are equal.)

For each sector, the adjustment and normal delivery times are scaled accordmg to the
average lifetime of capital produced by that sector. This means that when there is no -
coupling between the sectors («¢&r= 0), one sector is simply a time-scaled version of the
other. We felt that this approach was the cleanest way to investigate the coupling of two-
oscillators with different inherent frequencies. Thus,

T; T: T.
tf =1 =+ 7= rs-TL; 6,=0-1 8=15 ¥ =15, ¥ =15 years. (13)
Tt}c adjustment times ¥ = 7° = 1.5 years are shorter than Sterman's (his were

7% = 7° =3 years). However, we chose these values both because they seem more

realistic and because, together with the other modifications we have made, they yield a
period and amplitude closer to the original model.

The one-sector version of our model; though slightly different from Sterman's original
model, produces behavior very similar to it. Thus, with the above parameters, the
equilibrium point is unstable, and the system quickly settles into a limit cycle with a period
of approximately 47 years. Each new cycle begins with a period of rapid growth, where
desired output significantly exceeds capacity. The capital sector is thus induced to order
more capital from itself which, by further swelling order books, fuels the upturn in a self-
reinforcing process. Eventually, capacity catches up with demand, but at this point it far
exceeds the equilibrium level. The self-ordering process is now reversed, as falling
orders from the capital sector leads to falling demand, which further depresses the capital
sector's orders. Consequently, output quickly collapses to-the point where only the
exogenous goods sector places new orders. A long period of depression follows, where
the excess capital is gradually depleted, until capacity finally reaches demand. At this
point, however, capacity is below the its equilibrium level, and the cycle is ready to.start
anew. : : , -

3. Simxilatioh results

In the simulations below, we examine the consequences of varying the difference in
capital lifetimes A7 for different values of the coupling parameter «. As described in -
Section 2, we have scaled all other parameters with the capital-lifetime parameters 7, and
7, in the two sectors in such a way that, for no coupling between the sectors, they are
simply time-scaled versions of the original one-sector model. In the results that follow, '
sector 1 is always the sector with the longest | hfeume of its cap1ta1 output ‘

Introducing a coupling between the sectors will, apart from linking the bchav1or togcthcr,
also change the stability properties of each individual sector, taking the other sector as
exogenous. A high coupling parameter « implies that the strength of the capital self-
ordering loop within a sector is small. “In the extreme case ¢ =1, it disappears altogether.
A linear stability analysis around the steady-state equilibrium of the individual sector, -
taking the delivery delay of capital from the other sector is taken as exogenous and
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constant, shows that this equilibrium becomes stable for sufficiently high values of . At
this point, the behavior of the individual sector changes to a highly damped oscillation.

As will become evident below, this stability effect of the coupling parameter has -
s1gmﬁcant effects on the mode—lockmg behavior of the: couplcd system

As lon g as the two scctors have fairly similar parameters, we expect synchromzatlon (or
1:1 frequency locking) to occur, i.e., we expect that the two sectors will adjust themselves
to another to-yield a single aggregate economic long wave with the same period for both -
sectors.: The same may be true for sufficiently high coupling strengths, irrespective of
differences in sector parameters. An example of such synchromzatlon is observed for
A7 =6 yearsand o =0.25 in Figure 1, L G
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The figure shows the capacity of the two sectors as a funcuon of time in the steady state (after transients
have died out). The difference in capital lifetimes A7 is 6 years (i.e., the lifetime of capital type 1 and 2
is 23 and 17 years, respectively). The coupling parameter & is 0. 25 in this and the following. three
figures. Due to the nonhnear couphng the two sectors are locked into a single cycle.

If, with the same coupling paramcter, the difference in capltal lifetimes is increased to
At =9 years, we observe a-doubling of the period. The two sectors now alternate -
between high and low maxima for their production capacities. This type of behavior is
referred to as a 2:2 mode. It has developed out of the synchronous 1:1 mode through a .
period-doubling bifurcation (Feigenbaum 1978). As the difference in lifetimes is further
increased, the model passes through a Feigenbaum cascade of period-doubling
bifurcations (4:4, 8:8, etc.) to reach chaos at approximately A7 =10.4 years. Figure 2
shows an megular fluctuation existing for A7 =10.7 years. Calculation of the largest
Lyaponov exponent (Wolf 1986) confirms that the behavior is chaotic, yet it is interesting
to-note that the distance between cycles remains around 50 years even though the
magmtudc of each cycle varies a great deal.
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- Figure 2: Ch havi :
For a difference in capital lifetimes AT of 10.7 years, the behavxor is chaotic. (The couplmg parameter
o is still 0.25.) The model shows no regular periodic behavior, and initial conditions close to each other
quickly diverge so that, in practice, the behavior is unpredictable. Note that the behavior nonetheless
remains similar to the or1g1na1 uniform cycle except that individual cycles vary- greatly in-size.

A more detaﬂed 1]1ustrat10n of the route to chaos is prov1ded by Lhe blfurcauon diagram in-
Figure 3, which plotts the maximum production capacity attained in‘sector 1 as-a function
of the lifetime difference A7. The coupling parameter « is kept constantand equal to
0.25. The - diagram shows a rich fractal structure similar to the classic period-doubling
and chaos seen in a wide range of simple non-linear models (see e.g. [ Mosekilde, 1988
#251). For instance, inspection of Figure 3 shows that, in the chaotic regime, we find
periodic windows deriving from the 1:1 solution such as, for instance the 10:10 and the.
77 solutions existing around A7 =116 years and At =11.85 years, respectively. -

The parameter phase diagram in Figure 4 gives an overview of the:dominant modes for -
different combinations of the lifetime difference A7 and the coupling parameter ¢. The -
zones of mode-locked (i.e., periodic) solutions in this diagram are referred to as Amol'd
tongues (Arnol'd 1965) Bes1des the 1:1 tongue the figure shows a series of 1:n
tongues, i.e., reglons in parameter space where sector 1 completes precisely 1 long wave
oscillation each time sector 2 completes n oscillations. Between these tongues, regions
with other commensurate wave periods may be observed. An example is the 2:3 tongue
found in the area around o =0.15 and AT =12 years. Similar to the 2:2 period-doubled
solution on the right-hand side of the 1:1 tongue, there is a 2:4 period-doubled solution -
along part of the right-hand edge of the 1:2 tongue. Most likely, similar period- doubhng
structures can be found on ever finer scale along each of the other tongues producmg a.
fractal structure, but we have yet to explore this hypothesls in detail. ‘
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Figure 3: Bifurcation diagram for increasing A7 and constant & ‘
The figure shows the local maxima attained for the capacity of sector 1 (the longer-lived capital producer)

in the steady-state behavior for varying values of the lifetime difference AT. The coupling parameter &
is held constant at 0.25. For a given AT, a single value:in the:diagram indicates-a uniform limit cycle;

two-values indicate a period doubling with.a smaller and larger cycle, etc. .In chaotic regions; the number - ..

of local maxima is infinite since no individual cycles are identical.

Figure 4 reveals that the synichronous 1:1 solution extends to the full range of the lifetime’
difference At for sufficiently high values of the coupling parameter «. We believe that -
the reason for this is the stabilizing effect of high-values of o on the individual sectors.
When ¢ is sufficiently large, the equilibrium of the individual sectors, taking the other: .-
sector as exogenous, becomes stable. (For reference, two curves have been drawn in
Figure 5, defining the regions in which one or both of these individual equilibria are
stable: For.a given value of the lifetime difference, values of ¢ above the curve result ina
stable individual sector equilibrium.) ’

As « increases, the overall behavior is more and more derived from the coupled capital
self-ordering feedback, and less and less from the autonomous self-ordering mechanism
in each individual sector. Thus, for high values of , there is less competition between
the two individual, autonomous oscillations, and therefore less prevalence of the normal
mode-locking phenomena. - =5 e

For large differences in capital lifetimes and low values of the coupling parameter «, the
short-lived sector (sector 1) completes several cycles for each oscillation of the long-lived
sector (sector 2). However, as  is increased, the short-term cycle is reduced in
amplitude, and, for sufficiently high a's, it disappears altogether, resulting in a
synchronous 1:1 solution. The locally stabilizing effect of high values of o Creates a
complicated distortion of the Arnol'd tongues. For instance, the figure reveals that both
lhfeg:l region and the 2:2 region are folded down above the other regions for high values
or A7.
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The figure summarizes the steady-state behavior of the two-sector model for different combinations of the
coupling parameter ¢¢ and the lifetime difference A7T. A region labeled "p:q" indicates the .area in
parameter space where the model shows periodic mode-locked behavior of p cycles for sector 1 and q cycles
for sector-2.: (However, other solutions may. coexist at the same point in the'diagram, depending on the -
initial conditions of the model.), The question:mark indicates that the details of the diagram are still under
exploration. In particular, regions of chaotic behavior have not yét been outlined in detail. The dashed
curves across the diagram indicate the value of @ above which each sector in isolation (with the other -
sector treated as exogenous) becomes stable and the cycles are created solely by the interaction of the two
sectors. This effect implies that, for large ¢, synchronous behavior bécomes more and more prevalent.
Finally, the line at &r=0.25 and 6 < AT <12 years locates the region examined in the previous figures.

4. Conclusions L

The present paper represents work in progress and the results are necéésarily incomplete.
In particular, the details of the phase diagram in Figure 4 remain to be explored.
However, even at this preliminarystage, we can draw implications for both the validity of

~ - the simple long-wave model and for economic theory in general.

By employing only a single capital-producing sector, the simple long wave model )
-represents a simplification of the structure of capital and production. In reality, capital is
composed of diverse components with very different characteristics. We have focused on
the difference in the average lifetime of capital, and it is clear from our analysis that a
disaggregate system with diverse capital components exhibits a much wider variety of
fluctuations. Strong and moderate degrees of coupling have the effect of merging
individual cycles into a more uniform coherent cycle, although it is not clear whether
realistic parameter assumptions would lead to complete synchronization.

However, our analysis has relied only on the coupling introduced by the input-output
structure of capital production and has ignored the many other sources of linkage. The
most obvious links are created by the price system. If, for instance, one type of capital is
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in short supply, one would expect the relative price of that capital to rise. To the extent
that sectors can substitute different types of capital in their production, one would then
expect demand for the other, relatively cheaper, capital components to rise. Thus, an
imbalance in one sector would more quickly spread to other parts of the economy, and it
is likely that the overall motion of the system becomes more coherent. (We have
performed a few preliminary simulations of a version of the model that includes a price
system, and these simulations show a strong tendency for synchronization.)

In light of the coupling effect of the price system and of other macroeconomic linkages,
(e.g. the Keynesian consumption multiplier) one would therefore expect disaggregate
capital systems to show a coherent long-wave motion for a wide range of parameter
values, and the basic validity of the simple one-sector model seems intact. Thus, the fact
that the simple model aggregates capital into a single commodity is not a cause for doubts
‘about the theory. More important modifications may arise when one explicitly considers
other factors excluded from the model, such as labor, wages, and interest rates.

The increased coupling introduced by the parameter « also stabilizes 1nd1v1dual sectors by
reducmg the strength of the mvestment accelerator within each sector. This

For economic theory in general, our results show the importance of studying non-linear
coupling in the economic system. The intricacies of such phenomena suggest that there is
a vast unexplored domain of research in the area of economic cycles, and that results from
such studies may well prove counter-intuitive and, hence, generate new insights into the
causes and cures of business cycles. For instance, our model shows how two sub-
systems which in isolation are stable (for high values of ) become unstable when
allowed to interact. , -
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