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Abstract : The paper proposes a2 methodology, of building system dynamics models for queuing systems. The
methodology is applied to a variety of queuing systems and it is observed that, the models so developed are more
transparent than conventional state-transition diagrams and incorporation of real life complexities are easier. In
effect working out the transient and steady state behaviour of a wide variety of queuing systems becomes easy
without going into much mathematical tedium.
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1. Introduction
From a caréful study of the literature on-queuing theory one can make the following observations:

a. A majority of the queuing system models approximate the armival and service process to Poisson
- process. As a result, it is normal to find that most of the exact solutions available in literature relate to
queuing systems where: the interarrival and the process times- follow negative exponennal distribution.

These queuing systems are special cases of birth-death process.

b. Almost all the existing important results of queuing theory are obtained for the stea'dy-statq of queuing
systems. Additionally, the parameters that describe the system (arrival and service rates) are time
invariant or stationary. Few closed form expression exist for the transient behaviour of queuing systems

-and for systems where the arrival and service rates vary over. time.

On the contrary, there are. many situations in real life where the fluctuations of congestion with time that are of
most interest to the analyst. As an example, we can consider the problem of determining personnel requirement
in the railway booking counter. Normally, one would expect a variation in the number of people that would
queue up for service, with the maximum demand occurring during 8 am and 11 am and dunng 4 pm and 8 pm
on weekdays. It would be unwise to operate the same number of counters from early morning or late night hours
as during peak passenger hours. Clearly, the situation calls for an analysis that recognizes explicitly the fact that
demand for service in -this' case is time dependent and attempting a steady s!ate analysis renders the
recommendations made on the basis. of steady-state-analysis, less useful.

Closed form so]utions for transient behaviour are avnilablé fdr only a few queuing 's‘yste'ms (Morse 1956). Several

authors have tried approximate methods of analysis (Gaver 1966, Newell 1971, Neuts 1973, Moore 1975, Kotiah
+1978). Numerical solution techniques have proved to be of considerable help in obtaining transient behaviour

of queuing systems (Larson & Odoni 1983; Hengsbach and Odoni 1975; Kolesar, Rider, Crabill and Walker

1975). In all: these cases, solutions have been found. for the relevant differential equations. However, the

technique of analysis followed by these authors reqmres construction of the differential equation which can be
-difficult in the case of non-markovian queues.

‘In analyzing the ‘transient behaviour of quening systems numerical solution techniques can often be of
‘considerable help. Larson (1983) ‘has described one methodology for analyzing M/M/m queuing system.
Hengsbach (1975) and Kolesar (1975) has employed similar techniques to analyse transient behaviour of real
world systems. :

In this paper, we propose a generalized methodology, based on system dynaniics, to model a wide variety of
queuing systems. The methodology has been elucidated with the help of examples. It is observed that the models
so built enables solution of transient behaviour of the respective queuing systems. Since every element of a
system dynamics model has physical meaning, pictorial representation of queuing systems by system dynamics
flow diagrams offer deeper understanding than a conventional state-transition diagram. This in turn enables
incorporation of real life complexities without much of mathematical tedium. . S

2. System Dynamics Representation of Qﬁeuing,Systems

In order to build the methodology, first we consider a queuing system that has features that are quite general in
nature. An extensive class of well-known and ofien applied queuing systems can be simply viewed as special
cases. We assume, that the system under discussions has the following characteristics: .

0] New users arrive at the system in a Poisson manner with a mean arrival rate of A expected
arrivals: per unit time, where n is:the number of users, a user finds in the system (m ‘queue plus
in service) upon arrival, s -

(ii) There are m parallel, identical servers and for each of the servers service completion occurs
.in a Poisson manner with a mean service rate of p_ per unit time, where n is the number of
users in system.
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(iii) The queuing system operates under a FCFS queue discipline.

@iv) ~-The system has capacity to hold K (K" & -m) users.-Any person who arrives when there are
already K users m the system does not join the queue and leaves at once.

Given the above charactenstrcs of the queuing system and :assuming that there are N(t) users in the system at
time t, the following four equations of condmonal probabrhty can’ be written:.

PINGoAD = mo1 | NO) = n] = At + o(A)
PING+AD = n-1 | N®) = ] = p, A+ o(A) _

: PIN@+Af) = n | N@) = n) = 1 - A At - p At - o(A?)..
P[N(t+A1) = k| N(t) = n})=::0(At) - for |k-n} > 1

H W N =

where o(A#) is a collection of terms that go to zero faster than k At as At approaches zero We can therefore
ignore o At) rt' At is sufﬁcrently small.

Assumrng t.he notatron P () to mdrcate PIN(®) = n], from equatrons 1 thou” 4 we can wnte

P (t+AD) M(r)p_,,Ar +PON -@&, + p._)At] + P ‘,(t)ln- At S
Since the number of people in the system at any point of time defines the state of the system at that point time
then P (1) gives the probability that the systemis in state n at time t. By our specification the system in question

can accommodate any number of people from zero to K. Therefore there exrsts\posrtrve probabrhty P (t) for
every n= 0 1, 2 K, and the followmg equation holds true.

EP(I) ,l. Joranyt ' ' : T s

P () shall henceforth be referred:to:as the ‘state- probabtluy Equatron 5 after rearrangement can be wntten as
the following T

P+AD = PO + At [Byi®hs + P i®he) - POG 1] T
Clearly, equation 7 is the time dependent difference equation for P, (n = 0,1,2...K). P, can therefore be equated
to a system dynamics level variable. The flow-into P, during time interval t and t+ At is '

P.(Ou, forn = 0
P, @n,,, + P, (O, , otherwise.

'ihe flow out of P, during time interval t and t+.'At‘ s

CPOA, o m = 0O
PR, + 1) :otherwise:

The system dynamics model for the queuing system is now fully described.
3. Summary of the Methodology

The methodology to build system ‘dynamics models for queuing systems, as proposed in section 2 can be
summarized as follows:

1.0 * - The number of people present in the system defines the state which the system is in. For each state n
(n = 0,1,2..K), that the system can attain, take one level variable and, name it as pP,. In case the
number of states is unlimited, assume a very very large value for K.

2. " For each level P, (n=12.K-1) draw two rate variables flowing out of the level. One of these rates
would go to the P, with the associated parameter as A, the expected arrival rate for the queuing
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- system at state 0. The other. rate would go to P,  with associated parameter for this flow as u _, the
expected service rate at state-n..Both these rates will have information flows from the level: P,.

3. The level P,, representing an empty system will have only one rate variable flowing out to the level
P,. The parameter ‘associated With' this is Ay, the expected arrival rate at state zéro aljlﬂithé rate will
have information flow from the level P,. e ' '

,4. . The level P,, téﬁresenting'a saluraled system will have a nate variablellowing' out to the level P‘_l
The associated parameter for this rate variable is ., the expected service rate at state K, -and the rate
will have information flow from the level Pp.

5. ~"The level variables can have any-arbitrary mix of initial value provided equation 6 is satisfied for 1=0,

and in case a steady state for the system exists, -all-level .variables will oonverge to the steady state
value, . . . . ‘
4. Examples..

In tlns section we pmvnde a few examples where the methodology descnbed in section 3 has been used to build
system dynamics models of well-known queuing systems and their variations. In each case the model has been

_simulated with a simulation interval (DT) equal to 0.01, expected arrival rate (1) equal to 8, expected service
“rate (p) equal to 12. T was assumed that at the begummg of slmulatlon, the system is empty_ Consequently, the
initial value for Po is set equal to one and for all other level P, (n> 0) the initial yalue is iaken as zero. All
) along, the symbol L, has been used to denote the numbet of people in the system at tlme t.and the symboll.
has bcen used todenote the number of people in the queue at time t. The system is assumed to have reached
Pyt+ 1)
P)

‘a steady state at a point when the value of |1 - |+ (0 s-¢'s 2000)'is less than or equal to 1075,

4.1 The M/M/1/K Queuing System

The M/M/1/K queuing system is a speeia’l'case'o‘fl the queuing system described in seellon 3. The value of
system capacity K in this case is taken as 10.

A=k forn =0,1,2...10
p.n—p. forn = 0,1,2....10

The system dynamlcs ﬂow dxagram for the M/M/l/K queumg system is given in Figure 1.

The model was simulated for a total period of 20 time units(2000 simulation intervals). The dynamic behaviour
of the system is shown in Figure 2 and 3,
Figure 2 shows the behaviour of Py(f), which, by our convention, denotes the probability of the system being
idle at time t. According to the criteria set out in section 6 the steady state for the system is reached at time 10.0.
The steady state value for P, is 0. 33723. ‘Figure 3 shows the dynamic behaviour of L®and L Q- Steady state
values for L (f) and L'(t) are 1,87 and 1.21 respeciively. These also eonforms to the theoretically obtained value.

4.2 The M/M/l Queuing System

A M/M/1 queuing system is a special case of the M/M/I/K system where, by standard convenuon, the system

has capacity to hold infinite number of users’ &= oo) In other words, the’ number of states the system can
occupy i$ also infinite. As a result, by the melhodology proposed m secuon 5 modellmg sucha system i m system
dynamics requires infinite number of states.

It should be noted here that level variables in system dynamics are quantities that have physical significance.
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“Therefore, modelling a system with X = ', needs to'be done by 'mearis of ‘a large number of level variables

(K = ). However, the higher the K, the higher is the:computational time. This calls for choosing a K that on
one hand is sufficiently large and on the olherhand is good in terms of computatron time.

—Expenmems ware conducted to see (1) the effect of K on computauonal trme and (n) the effect of A/u on the
(sunulamn) time units to reach steady state.

In the first experiment, values of A was taken equal to 8, pu was taken equal to 12, K was varied from 10 to
*250 in steps of 10. DT value was 0.01 and criteria for steady state was as spelt out in the begmmng of section
6. The sirulation was carried out oni PC-XT with clock speed equal to 8 MHz.

For each value of K, from 10 to 250, the following procedure was repealed In the beginning of simulation,
P0) was: set _equal to-1, all -other P(0):(i:= 1,2,...K) were set equal to zero.-The clock-time was saved.
Simulation was carried out until ‘P, réached- steady state. At that point once again the clock time was noted
down. The elapsed time between these two clock times gave the computation time for that value of K.

The result of the first experiment, in the form of variation of computation time with K, is shown in'fi igure 4. The
behaviour shows that initially, computation time increases sharply with increase in K (gradrent I 65 in1).
. However, once .K = 180, the increase was much slower (gradrent ~ 2 m 1.,

In the second cxpenment nme srmulauon runs of the model was carried out wrth values of A varymg £rom 1 2

%o 10.8 in steps of 1.2, In all the runs 1 was taken equal fo 12. In each run, K was vaned from 10 to 200 in
steps of 10. DT value was 0.01 and criteria for steady ‘state was as spelt out in the beginning of section 6. The

simulation was-carried out on PC-XT wnh clock’ specd equal to 8 MHz For each value of K, PD(O) was set
initialized to 1 and a1l other P(O) (i= 12,. XK) were set equal 10 zero, and the simulation clock was initialized
o zero. Simulation was carried out until P, reached steady state. The time by the simulation clock was saved.

Figure 5 shows the variation of simulation time with K and A.
Based on the ﬁgures 4 & 5 ’tl;e ”followinyg observations can»be made H

o

() Increase in A/u requires higher system capacity to reach steady state.
® For the same system capacity, increase in A/j requires higher simulation time units to reach steady
state.

Based on these two experiments a it was thought that, K = 200 is a good magmtude to approxrmate infinite

system capacity, because, it is observed that for'all 0 < Afp < 1 the system reaches steady state within
reasonable computatron time.

Thus M/M/1 queuing system mode]led with K = 200, reached a stéady state P&’value of 0.33333,

‘43 ‘Variations of the M/M/1 queue
“Given the model for the M/M/1 queuing system and the correspondmg results of simulation that were shown to
match with theoretical results; several variation on the mmal mode] can be tned out. :

4.3.1 . M/M/1 queue where users balk

In.one such variation we can consider a system, where a prospective user of the queuing sysrem decides, upon
arrival at the system and. observation of'its state, not to wait for its use but to go elsewhere. Such situations are
common in real life where users have options to choose among service facilities. Obtammg closed form solution
_for this kind of a system is difficult. However the . methodology descn'bed in section 3 can be employed to
numerically evolve the time dependent behaviour of such a system, . : . .

We consider the problem no. 4.2 given in Larson 1981 as and example.
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The problem relates to one single server system with infinite system capacity, Poisson :arrival process and
negative exponential service times for which the rates of user arrival and service are
A n=012.
n+l
g ll. =B EREa n'=l,~2.,.

The syslem dynamics ﬂow dlagram for the problem is given in Flgurc 6 Imerestmgly, mcorporauon of this
variation didn’t call for significant modification of the model for the original M/M/1 system.

The model was simulated for a time period of 5 where the steady state was reached at time 1.6. The results
obtained from the simulation is shown in Flgure 7 and 8. We observe that the behaviour of Po (Fig. 7) is similar
to that in M/M/1 queue where users do not balk. “However since a pomon of the customer are always lost, the
 steady state is reached faster w:th a higher steady state value for Po (0 5 1432) mdlcatmg a lower utilization of
the service facilitjes. Flgure 8 glves the txme dependent behavnour of L and L Steady state value for L andL
" are 0.67 and 0. 18 respectlvely )

432 M/M/l queue with time dependent arrival rate,

In this variation of the normal M/M/1 queuing system, the rate at which customers arrive at the facility varies
with time. Real life examples of such systems can be found at railtway booking counters, cash counters of
departmental stores where arrival of customers are not uniform during all hours of a normal day.

For our pilrpoSe we have considered a time dep'endent'bchaviour for the expected arrival rate as given in Figure
9. The system dynamics flow diagram for the queuing system is given-in Figure 10.

" "The model was simulated for a time period of 25. The time dependent behaviour of ‘P, is given in Figure 11.
Since the arrival rate increases in steps, momentary steady states are observed in more than one place. The
minimum value for P, (0. 06395) is reached at tune equal to 10, when l was equal to p. The behavxour ofL

lnd L is g:ven in Flgure 12

44 M[E,Jl Queuing SySt’éin with Erlangian Service Time Distribution

In the case of M/E,/1 queuing system, the arnval is Markov:an but the service time distribution is Erlangian

of order k.

It is known that when k sequential phases have independent identical exponentiél distribution, then the resulting
density is known as k stage Erlang Thus the Erlang distribution with a mean of 1 is equivalent to a series
sum of k negative exponential distribution eéach with mean 1/(k p,)

In sections 5.3.1 and 5.3.2, we have demonstrated the how a Markovian departure process i.e. an Erlangian

process of order one, by means of a rate variable where the parameter is equal to . Elsewhere in Roy and
Mohapatra (90) it has been shown that, a k state transient Markov process is structurally equivalent to k order
exponential delay (where k single order delay are connected in parallel). It may therefore be argued that an
Erlangian departure process of order k can be represented by an exponential delay of order k.

The Erlangian.departure process, of order k, between P, (i = 1,2,...K ) to P, can thus be modelled, in system
dynamics, by means of the level variable P,, a rate which depends on P, (z = 1,2,..K ) and has ku as the
associated parameter and an exponential delay of order k-1 and delay constant of (k-1)/(k ). The resulting flow
diagram for M/E,/1 queuing system is given in figure 13.

It is easy to see why a delay of order k-1 is imposed on the rate variable. The Erlangian departure process of
order k is equivalent to a series of k cascaded first order delay i.e. k cascaded level and rate pairs. The level

variable P, and rate from P, (i = 1,2,..K ) to P, (i = 1,2,...K ) forms the first of these level rate pairs. The
remaining k-1 level rate pair can be modelled as a delay of order k-1. The exponential delay of order k-1 will
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have-a delay constant equal to- (k-1)-/ kp).
4.4.1 Example

As an example of this kind of queuing system, we consider a system where the arrival follows a Poisson process
with expected arrival rate A equal to 8 The servace follows a Erlanglan pxocess of order 3. The expected service
rate p equalto 12, ‘ ‘ ' S

Following the equivalence stated in section 5,4, the system is modelled as given in figure 14.

The model was sunulated for a tlme penod of 25 The resultmg nme dependcm behavmur of P is gwen in
Flgure 15, Observably, for some time initial period. the system demonstrales an osc:llatory behavnour around the
steady state value This can be attributed to the presence of third order delays (a level rate pair plus a second
order delay) in the system. “The time dependent behaviour of L, is given in Flgure 16 The steady state, by
criteria laid out in section 3, was reached after 6.25 time units. Stcady state value for Po was 0.01439 and the
same L, was 49.08 : : : : ¢

5, Conclusion
In conclusion we may make the following comments on the methodology proposed in this paper.

@) The method is Sirh;v)leand has general ai)plicabilily ioﬂbaild syatem d)}lnamics models for queuing system
... -With a vanety of arrival and service processes. The same methodology has been employed to analyse
.queuing systems with - A A(8) or arrival rates that are time dependent. o

(u) In the system dynamlcs framework mcorporatlon of real hfe complexmes can be done \wthout going
-into much of mathematical tedium. Existence of non-linearity in the model does not impair analysis of

the system. Analysis of complex queuing systems can be taken care w1thout makmg simplifying
assumptions.

(iii) ~  Transient behaviour for the queuing systems can be worked out by simulating the system dynamics
models over time. The steady state bebaviour also can easily be arrived at.

@) System dynamics models are very transparent ‘because the model variables and the parametexs have real
'life meaning. Therefore, the models have great pedagoglcal value. ‘
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