1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Dynamic Software Life Cycle Model

Henry Neimeier
The MITRE Corporation
7525 Colshire Drive
Mc Lean, Virginia, 22102,USA

Abstract

This software life cycle model encompasses initial development, software upgrades, and error
maintenance. The dynamic S**4 model is used to evaluate several different development and
maintenance strategies. The impact of Integrated Computer Assisted Software Engineering (ICASE)
tools on development and maintenance cost, schedule, and error rate is quantitatively evaluated.
Alternative techniques for grouping errors and functions into releases are evaluated.

Information Svstems, page 58

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Dynamic Software Life Cycle Model

Purpose

The U.S. Department of Defense is faced with an ever increasing demand for software intensive
systems on its combat platforms and supporting infrastructure. The combat effectiveness of
~ these planes, ships, and tanks is highly dependent on the functionality and reliability of their
embedded software. Given the huge investment in platforms and their operation costs, a small
change in mission effectiveness has a major value impact. A recent General Accounting Office
study reported: "Department of Defense (DOD) software costs total over $30 billion a year
(estimated to be $42 billion by 1995), of which about two-thirds is for maintaining, upgrading,
and modifying operational systems already in production. Today's major defense systems depend
largely on the quality of this complex and increasingly costly software. In fact many major
weapons systems cannot operate if the software fails to function as required.”

Current commercial software parametric models provide a static cost estimate. This fails
to address such dynamic elements as requirements change, greater communications overhead with
increased staff size, staff learning, integrated testing and rework processes, and changing progress
forecasts. Since decisions made in the software development phase have major impact on later
maintenance and error fix phases, a time based approach to costing is warranted. Another factor
impacting cost is the use of Integrated Computer Assisted Software Engineering (CASE) tools and
structured techniques which can. reduce software errors and simplify later functionality upgrades.
However, the additional tool and tool training costs in software development must be weighed
against productivity gains and later maintenance benefits. Oftentimes the software development
organization is different from the maintenance organization. This can lead to less rigorous testing
in order to meet contractual obligations of cost and delivery date. The result is that the
maintenance organization inherits a far greater cost of fixing errors later in the life cycle. This
paper documents the start of a research program to develop a new software engineering life cycle
paradigm that spans the entire software life cycle.

Related work

Tarek Abdel-Hamid and Stuart Madnick developed a detailed system dynamics model of the
software development cycle. Their book provides key parametric and relationship data and
references to supporting research. The book notes that real progress in a software process is not
generally known until the project is 80% complete and module and integration testing is
performed. Then the number of errors can be assessed and rework scheduled. Personnel added
later in the process can actually make the project later. This is due to the training burden put on
the experienced staff which takes time away from development activities. In addition, a larger
staff has a higher communication overhead. This can lead the software process to exhibit
hysteresis. The initial project size estimate impacts staffing, communication overhead, and
training requirements. A different initial estimate results in a different schedule and cost.

Nghia Nguyen extended the development model to a software training flight simulator.
This was implemented in "Microworlds Creator" a subset of the "S**4" software package used in
our research. This flight simulator game was used to train several managers in software
development project management. Our project has similar goals for the entire software life
cycle.

Kenneth Cooper showed the prime cause for late software delivery is the late discovery of
software errors. In his work he found that the average module quality (% of configuration
control modules not withdrawn for rework) for several U.S. commercial software projects was

Information Systems, page 59

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

68%. For DOD projects the quality level was 34%, which resulted in many rework cycles. Most
of the excessive DOD schedule overruns can be explained by this quality factor.

Capers Jones provides an extensive data base of software development relationships.
Included are the effect of staff experience on productivity and error rate, the effect of quality
assurance personnel allocation on software error rates, and the effect of CASE tools and
structured methods on productivity and error rates. Software size is measured in terms of function
points in this book. This measure is largely language independent, and thus was chosen for our
model. The data provided in Capers Jones work are averages over a large diverse set of software

~organizations. We used these averages as our default values for the initial model runs. Later the
model will be tailored directly to a user's organizational data.

Environment and measures of effectiveness

A law of diminishing returns operates as successive errors are repaired. As errors are fixed, the
error intensity decreases and the time between true error reports increases. False error reports are
a function of platform usage and do not reduce with time. Thus through time, a larger proportion
of effort is spent diagnosing these false error reports. With continual budget reductions, sufficient
funds are not available to maintain all platform software. So a key question is when to remove a
platform from software maintenance in order to free-up funds to maintain other platforms. This
led to the need for assessing the dollar value of maintenance operations in our life cycle model. A
key need of DOD software maintenance organizations is to justify their budgets in terms of war-
fighting mission effectiveness. If the useful remaining platform life can be estimated, a dollar
per year value can be calculated. Next the effect of software functionality and reliability on
platform effectiveness is assessed. Some platforms have a greater software dependence than
others. Most of these estimates are uncertain, so an analytic uncertainty modeling approach will
be applied to encode the input parameter uncertainties and calculate the uncertainty in final
output measures of effectiveness in the next model release.

Error repairs and functionality additions have a mission effectiveness value over the
remaining platform life. Thus, early fixes and enhancements have the potential for a greater
cost effectiveness impact. The summary measure of effectiveness in our model is the benefit-
cost ratio. Cumulative benefits beyond that of the initial software development are divided by
the cumulative error fix and software upgrade cost. Given the high platform investment and
operations costs, benefit-cost ratios of 300 are common. '

The initial single platform model was developed in "i think" and uploaded to S**4 for the
game interface. Later releases will consider multiple platforms competing for shared
maintenance center resources. In addition dynamic uncertainty analysis will be used. Both of
these options are greatly simplified by S**4's array capabilities.

Development and upgrade process

Figure 1 is an extract of the development and upgrade sector from the model. Figure 2 presents
development and upgrade sector results of a sample run. An initial "ReqtFP" requirement function
point size estimate is put into the "FP" function point tasking level at start of initial
development and for each scheduled upgrade. The rate at which function points are completed
(ProdR) is determined by staff assigned and the labor productivity. Priority is given to processing
initial function points over processing discovered rework. The quality level (Qcor) determines
whether function points are completed (FPCompleted) or enter the rework (FPRework) cycle.
Changes in requirements cause function points to flow back from "FPCompleted" and
"FPRework" to "FP". The higher the proportion of effort allocated to quality assurance

Information Systems, page 60

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

(QualityAssurePr), the earlier that the rework is discovered (DiscTm), and moved to the
discovered rework level (FPDiscRew). Depending upon the quality level (Qcor), the discovered
rework either joins FPcompleted or "FPRework". The later occurs when errors are made in
rework fixes. All function points are added to the total system function point count when a
completion release threshold is met, or the next scheduled upgrade starts. The threshold is
required because it takes an infinite time to complete all rework. At deployment time, the
associated errors are added to the undiscovered errors level (Errors) of the error fix process.
Figure 2 shows a sample time history of "FP", "FPCompleted", "FPRework", and "FPDiscRew"
levels. For the sample values used, there are times between upgrades when the sector is idle and
all personnel are assigned to the error fix process (times when'ﬁgure 2 function points are zero).

The functionality, estimated by the number of function points, deployed in aircraft
software has grown significantly in the past ten years (15% to 35% per year). This information
is captured with the potential function points level. If an aircraft's software is frozen, platform
mission effectiveness decreases relative to other aircraft that continue enhancing software.
Figure 3 shows the comparison of system function points deployed versus potential function
points. The "FPCompleted" level shows the next upgrade in process. The mission effectiveness
value increases when an upgrade is deployed (SystemFP).

ErPerFPdep

DeployEr

DeployFP SystemFP

UpgradeFP

AN -
_ Qcor ‘
FPCompleted o ReleaseTm
"'
FPRewo RewErR /'Y
dRvee o~
ez
Ve A’
S~

o~ "
H RewFPDepP DiscR

ReqtFP

Upgradeinterval QualityAssurePr

UpgradeFirstMo RewReqtChgR ReleaseTm ErDiscPwr

Figure 1. Development and Upgrade Sector

Information Systems, page 61

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

1: FP 2: FPCompieted 3: FPRework 4: FPDiscRew
900

i N Vel We
\"\

AaN

3
450 \

l\(/< f\,3 \/ﬁﬁ
If&\%\ i
\1 i 4-J-=;1-"_’—- 4 iy

15 30 45 60
Months

e XOR S

Function Points

AaNa

Figure 2. Sample Development and Upgrade Process

1: PotentialFP 2: FPCompleted 3: SystemFP

3200 /
1

T
/

2

/ﬂ
=

1600 T

Function Points
[V

M > ° S—
sy e
0 - '
0 15 30 45 60
Months

Figure 3. Sample Functionality

Error fix process

The error fix process sector is shown in figure 4 and a sample run is shown in figure 5. When a
software release is deployed, the associated undiscovered errors are added to the "Errors" level.
Errors are discovered and join the "Diagnose" level based on platform usage and the average error

Information Systems, page 62

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

discovery months. In the diagnose process, errors are duplicated, severity assessed, fix resources
evaluated, and results reported to the approval process. The approval process sorts errors into
critical (immediately fixed), upgrade (fixed in next upgrade), or ignore (not worth the effort).
Critical errors are fixed (CritErFix) tested (CritFixTest) and deployed (CritFixDepR) as soon as
possible. Some of these fixes fail testing (CritTestFailR) and rejoin the "CritErFix" level. The
process of fixing both critical and upgrade errors can insert new errors in the software. These
new errors (FixErR) join the undiscovered errors (Errors) level. Figure 5 shows a sample run.
Note that the lag between successive error fix process levels is a function of staff assigned and
labor productivity. Labor productivity is a function of staff experience and tools employed.

CritFixDepR

UpgRelP CritTestFailR ~ SveTm

S G FailTestPr

FixErPr
FixErR

Errors CritErFix , CritErFixed

ErDepP

A . [D} SH CritFixTest
. |ﬁ [CritERR CritFixDepR
: ‘ UpgErext UPGETFix UpgErFixed
SveTm l UpgRelP
AVgEIDi ‘ R ‘
vgErDiscMos ReleaseTm
UpgSelR UpgStartP
ErPrUpgrade P9 P
UpgradeFirstMo Upgradeinterval UpgRelease
Figure 4. Error Fix Process
1: Errors 2: Diagnose 3: Approve 4: CritErHix 5: UpgErNext
1: 2000
2: 350
3 300
4: 30
5: 2000
1: 1000
2 175
3: 150
4 15
5: 1000
g 2
E
53
0 ot e D) i 5y .
0 15 30 45 60
" Months

Figure 5. Sample Error Fix Process Run

Information Systems, page 63

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Decision parameters

Figure 7 shows the decision parameters in our life cycle model and their default values. These are
shown in the S**4 cockpit that provides the user game interface. A model run can be stepped to
any time period and stopped. The user can then check any of the output reports, graphs or
tables. In addition, the analyst can change any of the decision parameter values prior to
restarting the simulation. The decision variables form the basis for parametric sensitivity
analysis.

The decision parameters are divided into control, maintenance process, ICASE tool,
environment, staffing, monthly cost, and functional relationships categories. Functional
relationships are specified as power curves. This provides easy calibration of relationships to user
organization data. Monthly cost values are specific to a customer location. Environment

. parameters relate to the specific software platform including its: investment, operations cost,
remaining life, and software impact on mission effectiveness.

Figure 8 shows a sample animated report which summarizes both the previously described
error fix and upgrade processes. In addition, cost/value, staff, error, and functionality
performance measures are given in separate rectangles. The cost/value summary display gives the
monthly spending rate, cumulative cost from the start of the simulation, present platform
investment, cumulative value of maintenance and upgrade actions, and the benefit-cost ratio.

The staff summary display gives the present number of new and experienced staff. The
labor productivity is given in terms of function points per staff month. Productivity is based on
staff experience and tools employed. The average module quality level reported is a function of
staff experience, tools employed and the proportion of time allocated to quality assurance. The
service time is the average time for the error fix process execution. Staff are allocated to the
error fix activities in proportion to workload so perfect load balance is achieved.

The errors summary display shows the present number of undiscovered errors, and the
proportion of critical and upgrade errors fixed. The error impact on mission effectiveness is
shown as a multiplier (unity for no errors). Finally the monthly cost of any remaining
undiscovered errors is given.

The functionality summary display gives the present potential function points and
deployed system function points. Potential function points is the size of the ideal software
support package at the present technology level. The function ratio is the present ratio of
system function points divided by potential function points divided by the ratio at the start of the
simulation. If a lower proportion of potential function points are implemented, platform
mission effectiveness suffers due 1o lower software functionality.

Scenario sensitivity analysis

Program runs were executed to investigate the impact of individual parameter changes when all
other parameters were set to their base default values. The benefit-cost ratio was evaluated with
respect to the platform, environment, tool and requirement change parameters. Other measures
were calculated for the same parameters but space limitations preclude their presentation. The
parameters were set at low, middle (base), and high values.

Information Systems, page 64

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

1 AContr'.')lI - '——"—'-i Environment Functional Relationships
vgModuleQuality .5 N :
EtfortincrPerYea: A InitDevelopFP 500 Erl?r'\ s‘;:Ew rx
InflsteRatePeryr 08| | InitPotentialFP 1500 E; "P ‘r’
Qj.a':it!yis::re:rn 1 LiteTimeMonths 120 Erlr:gpxr
ReleaseErThresh .05 OperationPrinvYr 5 ErPerFPx
ReqtChgTmSiope o Platforminvest 2.00E9 ErTmMEPwr
RequireChangePr .2
UpgradeFirstMo 18 SWlmpaCtME 5 ExXpErPwr
Upgradelnterval 12 o TechGthYr 15 ExpErXx

. Maintenance Process ~_} " EXPE:YY?(
AvgErDiscMos 12[5 Staffing —— | Exp
CritErPrME .75 TS A ExProdPwr
ErPrCrit 0 mitFrexpota S| ExProdxx
ErPrUpgrade 7 PrStaffUpg 5 ExProdYn

i b :
FailTestpr i PrTmTramNew 2 ExProdYx
Usage : QuitPerYr 3
T > StaffBudget 0f |rionty Costs
2 I ! StMoApproveEr 05 FixCostPerMo
Egngm:? 1% i StMoDiagnoseEr A || ToolPrinvMo
p StMoRepairEr 7 ToolTrainPerStaff
"T'°°:IE"°' tM“" t 1 0000-3 StMoTestEr 2 TrainCostPerStafi
oolinvestmen “l
' TrainMo 3 VarCostPerMo

Figure 7. S**4 Decision Parameters

Fix Errors I .871483

Error Fix Process

Time Months 60.00

Rel Deploy
Errors Undllsscovered Start Upgrade
rrors Upgrade Error Fixes
703.86 NextUpg.Er |__ UpgErFix
.00 -
] 523.14 .000 965.78 | .000
Mean 58.655
Discover Mo
1 '2 Diagnose 50.720 Depl
67.15 eploy
| 4.265 Critical
ReportRt ' 62.942 Crit.Error Fix Crit.Fix Test |_C'Tor Fixes
4.55 .
Approve 5.16 4.357
72.14 |3.381 _ -484
Devalopimsnt And Upgrads Prossss
. Funstion
Release 3.355
Y d
P .| FP Reqts FP Completed Potential FP
00 3.36 6.332 . 379.90 3172
. System FP
2534
3.355 .336 5.655 Function Ratio
6.313
FP Rework FP Disc.Rework
20.13 .298 5.95
SY N Errors Cost/Valus
New Staff Undiscovered Spendin onth
.70 703.86 pe 8399"!;“6
Exper.Staff In Mainten.Process Maint.Value / Mo
9.30 1637.92 35.0E6
Experience Mos. Pr.Critical Fixed Investment
31.92 .789 1.6413E9
FP / Staff-Month Pr.Upgrade Fixed Cumulative Cost
35.46 . .545 2.60E6
Quality Level Mission Effective.* Cum Maint.Value
.95 .929 852_88E6
Service Time Mos Monthly Error Cost Benefit/Cost
1.067 4191896 328.169

Figure 8. S**4 Animated Report

Information Systems, page 65

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Platform parameters are presented in figure 9. The first parameter is unamortized
platform investment at the start of the simulation. It ranges from .5 billion dollars to 3.5 billion
dollars with a base value of 2 billion dollars. It has a significant impact on benefit-cost
performance. The next parameter is operations and maintenance costs per year as a percentage
of platform investment. It ranges from 25% to 75% with a baseline value of 50%, and also is
significant. The third significant parameter is the software impact on mission effectiveness
which ranges from 25% to 75% with a base value of 50%. .The fourth parameter is the remaining
- platform life over which the platform investment is amortized. Shorter life means a larger value
per year and hence more benefit from mission effectiveness improvements. The next to last
parameter is the initial development function points. Lower initial function point deployment
provides a larger potential gain from maintenance and upgrade activity. The last parameter is
‘the proportion of staff allocated to upgrade activities. At the baseline operating point more
personnel should be allocated to upgrades than to fixing errors.

Biow [Base MHigh

700

600

500

400

300

Benefit Cost Ratio

200

100

.5lnv3.58 .250pn.75 .25Simp.75 90Lite150 250FP750 .25PrUpg.78
Low-Parameter-High

Figure 9. Platform Parameter Sensitivity Analysis

Environment parameter sensitivity analysis is presented in figure 10. Increasing staff
- from § to 15 leads to less marginal benefit-cost return. In an absolute sense, significant value is
received ($658M to $900M) though at a cost increase ($1.58M to $3.62M). Increasing the
annual personnel quit rate from 15% to 45% reduces the benefit cost ratio. This is due to lower
inexperienced labor productivity, higher software error rates, and greater training costs.
Increasing average module quality improves the benefit-cost ratio. Increasing the average
months to discover an error from 6 to 18 months reduces the overall benefit-cost ratio.
Increasing the proportion of requirements changed during the development or upgrade process
from 10% to 30% reduces the benefit-cost ratio. Finally increasing the error threshold for the
earlier release with more errors proves to be more cost effective. The benefits from earlier added

functionality and upgrade error fixes more than compensates for the greater cost of fixing errors
in maintenance.

Information Systems, page 66

1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

450

Miow OBase B High

400 4

Benefit Cost Ratio

S5Staffis .15Quit.45 .3AveQual.7 6ErDis18 .1RqtCh.3 .025Rth.075

Low-Parameter-High

Figure 10. Environment Parameter Sensitivity Analysis

Conclusions

The dynamic software life cycle model presented in this paper is in an early stage of
development. S**4 array capabilities will be exploited to add dynamic uncertainty analysis, and
multiple software platforms competing for maintenance center resources in the next model
release. Data on key model parameters is being collected from various organizations. This data
will be used to calibrate the model to the organization's environment

This system dynamics model spans the entire software life cycle. Our model provides a
structure for a software metrics collection program. A major contribution of this model is that it
can be used to evaluate quantitatively several different software life cycle strategies.

References
Cooper,D.E.1993. Test And Evaluation: DOD Has Been Slow in Improving Testing of Software-

Intensive Systems. September 29,1993 GAO report

B-253411, United States General Accounting Office, Washington, D.C.

Abdel-Hamid, T.,Madnick,S.E.1990.Sofrware Project Dynamics An Integrated Approach.
Prentice Hall, Englewood Cliffs, New Jersey

Nguyen,N.,Smith,B.,Vidale,F.1993. Death Of A Software Manager: How To Avoid Career Suicide
Through Dynamic Software Process Modeling. American Programmer May 1993 Vol.6no.5
Cooper,K.G.,Mullen,T.W.1993. Swords and Plowshares: The Rework Cycles of Defense and
Commercial Software Development Projects. American Programmer May 1993 Vol.6 No.5
Jones,C.1991. Applied Software Measurement: Assuring Productivity and Quality. McGraw-
Hill,Inc. New York. _

Richmond,B. et al.1991.i think User's Guide. High Performance Systems Inc.,Hanover, New
Hampshire

Diehl,E.1992.8**4 The Strategy Support Simulation System. Microworlds Inc. Boston,
Massachusetts

Information Systems, page 67

