Improving Software Project Management Through System Dynamics Modeling
Abstract

Doug Sycamore
Motorola
Scottsdale, Arizona

Managing a project and understanding the many system dynamics and feedback loops associated
with a project is a formidable task. Creating schedules and tracking progress are two important
activities for managers. These activities become exponentially more complex and difficult for
larger projects. Good managers possess an intuitive talent understanding how a system will
behave when modifications are performed and make-decisions using these skills and experience.
However, when wrong decisions are made and implemented into a project, disastrous results
could occur, reducing the probability of success. The larger the project, the more feedback loops,
the greater the dynamics, and the reduced probability of accurately predicting an outcome from
modifications. Changing only one variable could effect the dynamics of a project with an
unpredictable outcome. This is particularly true when considering all the system feedback loops
associated with a project.

- In today's market there are plenty of Commercial Off The Shelf (COTS) project management
tools available. Many will perform basic features such as scheduling, budget tracking, man-hour
reporting, resource allocation, and capital expenditure tracking. Some of the more advanced
project management tools have graphical user interfaces with pull-down menus or pop-up
windows. These more advanced tools often have the graphical capability to display Gantt
charts, PERT charts, critical paths, pie graphs, or other types of charts, graphs, and histograms.
However, they all lack the ability to accurately model the system dynamic parameters that
influence a project's schedule, budget, completion percentage, and quality. For example, when a
project begins to fall behind schedule, then productivity pressure increases. None of the tools
available in today's market implement this type of feedback.

Very few COTS project management tools have the capability to provide a manager with "What-
If" scenarios. None of the tools available in today's market take into consideration how these
system dynamic variables affect the outcome of a project. What is needed is a tool that gives
accurate foresight into the dynamics of a system based upon intuitive managerial decisions.

The following Masters Degree thesis statement was proposed:

Using the "iThink" tool available from High Performance Systems, a
new tool can be developed such that a software manager may plan,
track, and predict the outcome of a software project better than the
more traditional approaches by incorporating system dynamic
feedback loops into the tool.

The tool developed to support the Masters Degree Thesis models system dynamics describing the
relationships among the various components of a software system. This is accomplished through
equations that represent causal influences rather than statistical correlation. When a software
manager determines some type of corrective action plan must take place to a project, this tool can
be used to simulate the modifications before implementing the new idea. As the tool executes
the simulation, a software manager can visually observe the results in a real-time fashion. The

54!




Improving Software Project Management Through System Dynamics Modeling
Abstract

results are calculated using the system dynamic model developed which takes into consideration
areas like communication overhead, schedule pressure, and rework hours generated by defects.
The flexibility exists to pause the simulation at any time and make multiple modifications to
controllable parameters. This tool also allows the ability to resume after being paused and
incorporates the modifications into the simulation.

The tool has four basic feedback loops comprised of non-linear system dynamic variables (see
Figure 1). All four of these feedback loops begin and end at the object labeled, Schedule and
Effort, which is the nucleus of the system. This object represents a project's schedule and the
effort in staff hours to complete the project.

Figure 1

The first feedback loop represents the staffing profile of a project (see Figure 1:a). Depending on
the schedule and the amount of effort it will take to complete a project, a software manager can
adjust the staffing profile. The staffing profile effects the productivity based on the number of
engineers working on a project, the domain expertise of the engineers, and the amount of time an
engineer participates on a project. The tool is also configurable to reflect the impact of engineers
often multitasked on more than one project.

Sq2



Improving Software Project Management Through System Dynamics Modeling
Abstract

The second feedback loop models the communication overhead (see Figure 1:b). If a project
requires 30 engineers to complete the work, the communication overhead is much greater than a
project requiring only five engineers. This concept seems obvious, but it is not trivial when
modeling the effect it has on the productivity. For example, a project with 30 engineers will
experience a productivity degradation of 54% due to communication overhead, whereas a project
with five engineers only experiences a productivity degradation of 1.5%. It is important to note
that the graph depicting the communication overhead is a non-linear curve.

The third feedback loop takes into consideration the amount of defects generated by the
engineers during the design and code phases of a software increment, which translates into
rework hours (see Figure 1:c). The more rework hours the greater the impact to the schedule. A
software increment is defined as an event consisting of design, code implementation, and
integration activities of a software system. Multiple increments can be performed in serial,
parallel, or a combination of the two. The tool also models how different engineers with various
domain expertise generate different amounts of defects. An engineer with less domain expertise
will generate more defects than an engineer with a higher degree of domain expertise.

The fourth feedback loop models the schedule pressure associated with the percentage of work
complete per the schedule (see Figure 1:d). The further behind schedule the greater the schedule
pressure. As schedule pressure increases, engineers will work more hours and more efficiently
becoming more productive. However, if schedule pressure remains high and engineers are
working many hours of overtime, they begin to generate more defects and eventually an
exhaustion limit is reached. Once the exhaustion limit is reached, productivity will decrease until
a time period of recuperation is achieved. The transition from exhaustion to recouping is not a
step function and is modeled by a curve that represents a practical situation. The converse also
holds true. When a project is ahead of schedule, then schedule pressure decreases and less hours
and efficiency is demonstrated by the engineers.

Each feedback loop is not conceptually complicated. However, when incorporating the four
feedback loops with the non-linear system dynamic variables, it becomes almost impossible for a
software manager to accurately predict the outcome of a project, especially when changes are
made to the inputs during the middle of a project (See Figure 2). Imagine making a modification
to a staffing profile, and then trying to understand exactly the effect it has on the project when
considering all of the feedback loops it affects simultaneously.




Improving Software Project Management Through System Dynamics Modeling
Abstract

Figure 2

The tool developed to support the Masters Degree Thesis allows a software manager to configure
a project and execute many "what if" scenarios. The ability to modify the staffing profile, the
expertise of the staff, the dependencies of the software increments, and many other features
before and during a simulation exists. As the simulation runs, many different outputs are
updated in a real-time fashion to the screen and the final results can then be logged for later
analysis.

Note: This tool was not developed for commercial use, but designed to prove the concept of the
Masters Degree Thesis statement. It demonstrates how system dynamic behavior and feedback
loops need to be incorporated into existing project management tools rather than depending on
the limitations of current static processing currently being modeled.

Author's Biography: Doug Sycamore is a full time engineer working as a software task leader
for Motorola, Government Space and Technology Group (GSTG) in Scottsdale, Arizona. He
received a B.S. in Computer Science from Michigan State University and is currently finishing
an M.S. in Computer Science from Arizona State University under the supervision of Professor
James Collofello.

594



