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Introduction : : ,

This paper tackles on instabilities and chaos which can occur in production systems whose
organisation is based on the just-in-time philosophy. This could be a Kanban system which
controls the production flows. In this case, cards or other manual and visual devices, accompanied
by parts containers, signalise transfer and/or manufacturing operations thus acting as production
orders. For instance, a worker, from an assembly line, needing more components, attaches a
transportation Kanban to an empty parts container, that is moved to the previous work centre
(according to routing procedure) where is replenished (with new manufactured parts) and moved
back to the assembly line.

At first, our research focused on one elementary cell of an integrated production line which has
many dysfunctions, like stoppages of work or rejected parts. In such circumstances, different
regulation mechanisms are acting in case of fluctuations in the work-in-process inventory. We
built a system dynamics model whose objective consisted in studying the inventory stability
according to different productivity values. The simulation results led us observe chaotic behaviour
for some values of this parameter (many other authors have explored the deterministic chaos
phenomenon in system dynamics, see for instance : Mosekilde, Mosekilde, Aracil and Allen,
1988). These results were also observed by simulation of an interactive automata network, hence
the originality of this paper.

The System Dynamics Model

The causal diagram

The following influence diagram (see figure 1) shows the dynamics relations inside a basic
production cell like a workstation (cf. the model of a production unit proposed by Massotte from
IBM in 1993). The principle of the production policy consists in continuous refurnishing of the
Work-In-Process (WIP) inventory. The production lot size (production rate) is equal to the level
of WIP multiply by the productivity rate. The output rate (production completion rate) is equal to
the WIP level which is weighted by the ratio of the real level of WIP to the desired level of WIP.
Three loops are present in this model as shown in the figure 1.
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Figure 1 - Influence diagram of the Working Centre Control

544




The flow diagram
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Figure 2 - Flow Diagram

The corresponding level and flows equations are :

Work_In_Process_WIP(Y) = Work_In_Process_WIP(t - dt} + (Production_Rate - Production_Completion_Rate) * dt
INIT Work_In_Process WIP = 1

Production_Rate = Work_In_Process_WIP/Productivity/DT

Production_Completion_Rate = Work_In_Process_WIP*Correction_of- WIF/DT

Correction_of WIP = Work_In_Process_WIP/Desired WIP

Desired WIP =2

Productivity = variable contained in 0 to 1.

Remark : The production and output rates are both divided by dt because the input and output
flows are discrete and correspond on a set of many products which are laying on a container.

Simulation results

By using exclusively the Euler's method, we simulated the previous model and we studied the
sensitivity of the work-in-process level to the productivity rate (see results in figure 3). By very
low productivity for instance 33% which could correspond on an important rejected part rate of
the previous production line or on a low capacity, the work-in-process level can not reach a stable
equilibrium. This evolution is chaotic. In case of 50% productivity rate, we again observed an
unstable behaviour of WIP but at this time, it is a periodic evolution and the attractor is a second
order limit cycle. The last value of the productivity as showing in the figure 3, is a more current
value (66% and over). In this situation, the work-in-process level is stable and strives towards a
fixed point attractor (see also the next figure 4).

Inventory Evolutions

Strange Agractor for productivity = 1/3

AN AM S

v

a Alyac

\/ \/ VFixed JVmu Wcm
[= ) —
-

Inventory Level
RN N




Productivity vs Work-In-Process

WIP level
S = WA WL N

Figure 4 - Bifurcations and chaos in the model

The Equivalent Automata Network Model ,
The following step consists in comparing the previous dynamic simulation results to the
simulation of an equivalent automata network. The principle of the transformation of our previous
model structure by levels and flows into an automata network is showing in the figure 5. This type
of neural network is a discrete dynamical model (cf. Fogelman Soulie et al., 1987). It is an
iterative model where space and time are discrete; where elements involved in the system, called
cells, are finite automata, and where the interactions between these elements are moreover purely
local. As is now well known, this type of systems go back to Von Neuman, in the early 1950s

(Von Neuman, 1966).
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Figure 5 - The equivalent Neural Network
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To transform the previous model into a neural network, the different continuous variables were
changing into discrete variables as shown below. It was also necessary to transform the non-linear
relations of the model by using hidden layers of units. This type of simulation has permitted to
bring in light the same attractors as previously : fixed points, limit cycles and chaotic attractors
(see also the work of Reggiani et al., 1995).

Neurones of the model :
ny = Work-In-Process WIP (values 0, 1, 2)
n = Production_Rate (values 0, 1,2, 3,4, 5, 6)
n3 =Production_Completion_Rate (values 0, 1, 2)
n4 = Correction of WIP (values 0, 1, 2)
ng = Desired WIP (values 0, 1, 2)
ng = Productivity (values 0, 1, 2, 3)
ns tony and nj to ny 5 = hidden layers of neurones (values 0, 1, 2, 3, 4).

Threshold Equations :
If(n) +ng-n3)>0thenny =(n) +ny-n3)elsen; =0
If(0.8n10 + 0.96!111 +nyp -10) > 0 then nm = (0.8!110 + 0.96!111 +1nyg -10) else ny = 0
If (0.8n1 +0.96n; | +nj5 -10)> 0 then n3 = (ny3 +0.3n)4 +nl5-6.1) elsen3 =0
If (n5 - 2ng - n7 + 0.99) > 0 then ng = (05 - 2ng -n7 +0.99) elseng = 0
If(n] +ng-1)>0thenng=(n; +ng - ) elseng =0
If(-n; +ng-1)>0thenng =(-ny +ng- 1) elseng=0
If(ny +ng+ 1> O thenny=(n; +ng + 1) elseny =0
If (ny +0.7ng + 1)> 0 thennjg = (ny +0.7ng + 1) elsenjp=0
If (12n; +ng+1)>0thenny; =(l.2n] +ng+1) elsen;; =0
If (1.2n; +0.7ng + 1) > O then nj5 = (1.2ny +0.7ng+1)>0elsenj5=0
If (2n1 +n4)> 0 then n13 =(2nl + nd)elsenl3 =0
If (2nl1 +n4)> 0 then nl4 =(2nl + nd) elsenl4=0
If (2nl1 +n4)> 0 thennl5 =(2nl + n4)elsenl5=0

Conclusion

A further analysis of these results has been realised with two objectives :

- one more methodological in term of complementarity between theses two approaches (see
Thiel 1995)

- the second was more qualitative and treated the dynamic proprieties of the system.

New research proposals have been elaborated in the objective to improve the understanding of
more complex production systems which generate non-linear behaviour and deterministic chaos.
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